MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mar	Mark Scheme: Teachers' version Syllabus		Paper	•
		GCE	AS/A LEVEL – May/June 2	010 9701	41	
1	(a) P: b	(a) P: burns with white / yellow flame or copious white smoke / fumes produced				
	4	P (or P ₄) + 5O ₂	$\longrightarrow P_4O_{10}$		(1)	
	S: b	urns with blue fla	ame / choking / pungent gas p	produced	(1)	
	S	$+ O_2 \longrightarrow S$	SO ₂		(1)	[4]
	(b) (i) 2 (ii)	Ca ₃ (PO ₄) ₂ + 6	$SiO_2 + 10 C \longrightarrow 1 P_4 + 6$	5 CaSiO ₃ + 10 CO	(2)	
		allotrope	type of structure	type of bonding		
		white	simple / molecular	covalent		

(in each case P has to be trivalent. Many alternatives allowable for the polymeric red P) (2) (8 max 7) [7]

[Total: 11]

(4)

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	•
			GCE AS/A LEVEL – May/June 2010	9701	41	
2	(a)	variable	ions / compounds oxidation states n of complexes activity		(1) (1) (1) (4 max 3)	[3]
	(b)	(green is ppt is Ni(; [Ni(H ₂ O) ₆] ²⁺) (OH) ₂		(1)	
		blue solu	Ition is $[Ni(NH_3)_6]^{2+}$ or $[Ni(NH_3)_4]^{2+}$ or $[Ni(NH_3)_4(H_2O)_2]^{2+}$	2+	(1)	
		formed b	y ligand exchange		(1)	
		Ni ²⁺ + 2	$2OH^{-} \longrightarrow Ni(OH)_{2}$		(1)	
		Ni(OH) ₂	+ $6NH_3 \longrightarrow [Ni(NH_3)_6]^{2+}$ + $2OH^-$		(1) (5 max 4)	[4]
	(c)	M _r = 58	.7 + 48 + 6 + 28 + 32 = 172.7 (173)		(1)	
		n(Ni) =	4.00/172.7 = 0.0232 mol		(1)	
		mass(Ni) = 0.0232 × 58.7 = 1.36g			
		percenta	ge = 100 × 1.36 / 3.4 = 40.0 %		(1)	[3]
					[Total	: 10]
3	(a)	PbO ₂ de	composed into PbO (and O_2). (Sn O_2 is stable)			[1]
	(b)	or P	l_4 dissociates into Cl_2 and $PbCl_2$ (white solid) $bCl_4 \longrightarrow PbCl_2 + Cl_2$ or in words			
		Cl ₂	+ 2KI \longrightarrow 2KC l + I ₂		(1)	
		E°(C	$\mathcal{O}_2/\mathcal{C}^-$ is more positive than $E^\circ(\mathrm{I}_2/\mathrm{I}^-)$		(1)	
		(ii) SnC	l_4 is more stable than PbC l_4 / answers using E° accept	ed	(1) (5 max 4)	[4]
	(c)	(i) C <i>l</i> :C	Cl or $Cl=C-Cl$		(1)	
			<i>or</i> non-linear <i>or</i> angle = 100–140°		(1)	
		(ii) CC <i>l</i>	$_{2}$ + H ₂ O \longrightarrow CO + 2HCl		(1)	[3]

(ii) $CCl_2 + H_2O \longrightarrow CO + 2HCl$ (1) [3]

[Total: 8]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper 41			
			GCE AS/A LEVEL – May/June 2010	GCE AS/A LEVEL – May/June 2010 9701				
4	(a)	hydroge	n bonding		(1)			
		•	H ₂ CH ₂ CH ₂ OHOHCH ₂ CH ₂ NH ₂ or NH ₂ CH ₂ CH ₂ OH ond from OH group to either OH or NH ₂)	NH ₂ CH ₂ CH ₂ OH	(1)	[2]		
	(b)		nine is more basic than phenylamine lone pair on N is delocalised over ring in phenylamine ion)	e (so less availab	(1) le for			
			opyl group is electron-donating, so the lone pair is mo	re available	(1)	[2]		
	(c)	c) $HOCH_2CH_2NH_2 + H^+ \longrightarrow HOCH_2CH_2NH_3^+$ or $HOCH_2CH_2NH_2 + HCl \longrightarrow HOCH_2CH_2NH_3^+Cl^-$ or $HOCH_2CH_2NH_2 + H_2O \longrightarrow HOCH_2CH_2NH_3^+OH^-$ (reaction with any acceptable Bronsted acid accepted)						
	(d)	(i) X is	CH ₃ CH ₂ CN		(1)			
		· · ·	1 is KCN in ethanol, heat [HCN negates] 2 is H_2 +Ni / Pt or LiAlH ₄ or Na in ethanol [NOT National Proceeding 1]	3H₄ or Sn/HCI]	(1) (1)	[3]		
	(e)	ethanola Na or Cr ₂ C or MnC or PC	D_{7}^{2-} / H^{+} D_{4}^{-} / H^{+} D_{4}^{-} / H^{+} $PC l_{5} / SOC l_{2}$ (1) steamy fully fully fully for the second state of the seco	ence / bubbles pr ns from orange to lour disappears Imes				
		Br ₂ (aq) decolouri	ses / white ppt for dye formed	rmed (1)	[4]		

[Total: 12]

	Pa	ige 5		Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9701	Paper 41	
5	(a)	(i)	E° =	0.40 − (−0.83) = 1.23V		(1)	
		(ii)	2H ₂	+ $O_2 \longrightarrow 2H_2O$		(1)	
		(iii)		electrode will become more negative electrode will also become more negative / less positive	e	(1) (1)	
		(iv)	no c	hange ecf from (iii)		(1)	
		(v)	incre	eased conductance <i>or</i> lower cell resistance <i>or</i> increa	sed rate of reac	tion (1)	[6]
	(b)			1.47 - (-0.13) = 1.60V $D_2 + Pb + 4H^+ \longrightarrow 2Pb^{2+} + 2H_2O$		(1) (1)	
		(iii)	PbC	D_2 + Pb + 4H ⁺ + 2SO ₄ ²⁻ \longrightarrow 2PbSO ₄ (s) + 2H ₂ C)	(1)	
		(iv)	E^{o}_{cel}	ı will increase		(1)	
				Pb ²⁺] decreases, E _{electrode} (PbO ₂) will become more positi become more negative	tive, but E _{electrode} ((Pb) (1)	[5]
						[Total:	11]
6	(a)	(i)	SOC	Cl_2 or PCl_5 or PCl_3		(1)	
		(ii)	or C	$CO_{2}H + SOCl_{2} \longrightarrow CH_{3}COCl + SO_{2} + HCl$ $CH_{3}CO_{2}H + PCl_{5} \longrightarrow CH_{3}COCl + POCl_{3} + HCl$ $SCH_{3}CO_{2}H + PCl_{3} \longrightarrow 3CH_{3}COCl + H_{3}PO_{3}$		(1)	[2]
	(b)	(i)		$C_6H_5CO_2C_2H_5$ $C_6H_5CONH_2$		(1) (1)	
		(ii)	este amio			(1) (1)	
		(iii)	nucl	eophilic substitution / condensation		(1)	[5]
	(c)	(i)		C <i>l</i> COCOC <i>l</i> C <i>l</i> COCOCOC <i>l</i>		(1) (1)	
		(ii)	hydr	ogen bonding		(1)	
		(iii)	beca or le	ause it's an amide <i>or</i> not an amine <i>or</i> its lone pair is de ess	localised (over C	C=O)	
				lable due to electronegative oxygen [NOT: E is neutral,	, but the diamine	e is (1)	
		(iv)	cond	densation (polymer) <i>or</i> polyester		(1)	[5]
						[Total:	12]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	41

[6]

[Total: 6]

8 (a)

Block letter	Identity of compound
J	Deoxyribose (NOT "sugar" or "pentose")
К	Guanine
L	Phosphate
М	Thymine

All 4 correct score 3 marks, 3 score 2, 2 score 1	[3]
(b) hydrogen bonds (1) between the bases (1)	[2]

(c)	1 2 3 4	RNA is a single strand; DNA is double strand RNA contains ribose; DNA contains deoxyribose RNA contains <u>uracil;</u> DNA contains <u>thymine</u> RNA is shorter than DNA	(1) (1) (1) (1) (4 max 3)	[3]
(d)	or	NA – copies the DNA gene sequence forms a template for a particular polypeptide / in protein synthesis IA – carries amino acids to the ribosome	(1) (1)	[2]
			[Total:	10]

	Page 7						Teachers' version			Syllabus		Paper	
				G	SCE AS/A	LEVE	EL – May/June 20 ⁻	10		9701		41	
9	(a)						n states / magnetic applied magnetic f		ents			(1) (1)	[2]
	(b)	diffe pea	erent ks ar	chemical e in the a	environme	ents :1 (n	nfluenced by adjac nethyl to –OH proto 5		toms	/ protons a	re in tv	vo (1) (1)	[2]
	(c)	(i)											
			(CH₃CH₂C0	O₂H		CH ₃ CO ₂ CH ₃			HCO ₂ CH ₂ C	CH3		
			р	ropanoic a	acid		methyl ethanoate			ethyl metha	inoate		
										all for (2	2) two fo	or (1)	
		(ii)					methyl ethanoate ch have 3 different	nroton	envii	ronments hi	it the	(1)	
					ws only 2			proton				(1)	
			A is	OCH ₃ ,	B is CH	₃CO						(1)	
		(iii)		pound – p -OH proto	propanoic pn	acid	<i>or</i> ethyl methano <i>or</i> the H–CO pro					(1)	[6]
	(d)	(i)	dista	ince betw	een atom	s / bor	nd lengths / bond a	ngles				(1)	
		(ii)	hydr	ogen ator	ns					[Total: ²	(1) 12 max	[2] 10]
												FT = 4 = 1 -	401

[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	41

[1]

10 (a) ester or amide (allow nitrile)

