MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9701	43	
1	(a) C ₆ H	H₅-CO	OCH_2OH or $C_8H_8O_2$ and $NaCl$ or Cl^-		(1) + (1)	[2]
	(b) (i)		exponent / power to which a concentration is raised in an equation, e.g. " ^a " in the equ: rate = k[A] ^a)	the rate equatic	on (1)	
	(ii)		1 and 2: rate increases by 50% as does [RC1], so rate 1 and 3: rate \propto [NaOH] ¹	$e \propto [RCl]^1$	(1) (1)	
	(iii)	(rate	e =) k[RC1][OH⁻]		(1)	
	(iv)		(can be a solid line)			
		• • •	(+) (+) (+) (+) (+) (+) (+) (+) (+) (+)	f candidate's r	(1) ate	[7]
	(c) (i)	use Whit show if wa	RC1 / RCOC1 to) (aq) Ag ⁺ / AgNO ₃ or named indica pH probe te ppt appears (faster with RCOC1) or turns acidic of ws pH decrease ater is the only reagent, and no pH meter used: awa	colour (e.g. red)	(1) or (1)	
	(ii)	(C=0 RC0	<, for "steamy / white fumes" D is polarised /) carbon is more δ+ than in R-C <i>l or</i> ca DC <i>l</i> can react via addition-elimination ntion of electronegativity on its own is not enough for th	·	e or (1)	[3]

[Total: 12]

	Page	9 3	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9701	43	
2	(a) le	ess solu	ible down group		(1)	
	la	attice er	nergy and hydration energies both decrease (i.e. becor	ne less negative)	(1)	
	b	ut H.E.	t H.E. decreases more (than L.E.) <i>or</i> change in H.E. outweighs L.E.		(1)	
	S	o ΔH_{sol}	becomes more endothermic / less exothermic		(1)	[4]
	(b) (i	i) for N	Mg:∆H = 2993 – 1890 – (2 × 550) = (+)3 (kJ mol ^{−1})		(1)	
		for S	Sr: ∆H = 2467 – 1414 – (2 × 550) = –47 (kJ mol ^{–1})		(1)	
	(ii	•	DH) ₂ should be more soluble in water, and Δ H is a tive	more exothermic	/ (1)	
		Ass	uming "other factors" (e.g. ΔS , <i>or</i> temperature etc.) are	the same	(1)	
	(iii	•	DH) ₂ should be less soluble in hot water, because thermic	ΔH is negative	/ (1)	[5]
	(c) (i	i) K _{sp} :	= $[Ca^{2+}][OH^{-}]^2$ (needs the charges) units: mol ³ dm ⁻⁹	((1) + (1)	
	(ii	i) n(H ⁻	⁺) = n(OH ⁻) = 0.05 × 21/1000 = 1.05 × 10 ⁻³ mol in 25 cr	n ³		
		[OH	[−]] = 1.05 × 1000/25 = 4.2 × 10^{−2} (mol dm ^{−3})		(1)	
		[Ca ²	²⁺] = 2.1 × 10⁻² (mol dm ⁻³)		(1)	
		K _{sp} :	= 2.1 × 10 ⁻² × (4.2 × 10 ⁻²) ² = 3.7 × 10⁻⁵		(1)	
	(iii		s soluble in NaOH due to the common ion effect <i>or</i> ed ne l.h.s. by high [OH⁻] (NOT just a mention of Le Chat ^r	•	ed (1)	[6]

[Total: 15]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	43

3 (a) SiF₄ is symmetrical *or* tetrahedral *or* bonds are at 109° *or* has no lone pair *or* 4 electron pairs shared equally *or* all Si-F dipoles cancel out, *or* SF₄ has a lone pair (on S).

(b)

compound	molecule has an overall dipole	molecule does not have an overall dipole
BC1 ₃		\checkmark
PCl ₃	\checkmark	
CCl_4		\checkmark
SF ₆		\checkmark

mark row-by-row,

- (c) (i) Si and B have empty / available / low-lying orbitals or C does not have available orbitals (allow "B is electron deficient" but not mention or implication of d-orbital on B)
 - (ii) $BCl_3 + 3H_2O \rightarrow H_3BO_3 + 3HCl \text{ or } 2BCl_3 + 3H_2O \rightarrow B_2O_3 + 6HCl$ (1)

$$SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl etc., e.g. \rightarrow Si(OH)_4, H_2SiO_3$$
(1) [3]

(d) (i)
$$Si_3Cl_8O_2$$
 (this has $M_r = 84 + 280 + 32 = 396$) or $Si4Cl_4O_9$ or $Si_8Cl_4O_2$ (1)

(ii)

mass number	structure
133	Cl ₃ Si
247	Cl_3 Si-O-Si Cl_2
263	Cl ₃ Si-O-SiCl ₂ -O

(3)

(if correct structures are **not** given for last 2 rows, you can award (1) mark for *two* correct molecular formulae: *either* $Si_2Cl_5O + Si_2Cl_5O_2$ *or* $Si_3ClO_8 + Si_3ClO_9$ *or* $Si_7ClO + Si_7ClO_2$)

(iii)

allow ecf on the structure drawn in the third row of the table in **(ii)** but any credited structure must show correct valencies for Si, C*l* and O. (1) [5]

[Total: 11]

(2) [2]

(1)

[1]

	Page 5	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2010	9701	43	
4		$1s^{2}2s^{2}2p^{6}$ $3s^{2}3p^{6}3d^{3}$ $1s^{2}2s^{2}2p^{6}$ $3s^{2}3p^{6}3d^{5}$) out of (2) for $3s^{2}3p^{6}4s^{2}3d^{1}$ and $3s^{2}3p^{6}4s^{2}3d^{3}$)		(1) (1)	[2]
		three of the following points: initial (pale) green (solution) fades to (almost) colourless (allow yellow) then (permanent faint) pink finally (deep) purple		(3)	
	(ii) MnC	$D_4^- + 8H^+ + 5Fe^{2+} (+ 5e^-) \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+} (+ 6)^{10} + 60^{10} +$	5e ⁻)	(1)	[4]
	(c) E ^e value	s: $O_2 + 4H^+/2H_2O = +1.23V$ $Fe^{3+}/Fe^{2+} = +0.77 V$ $O_2 + 2H_2O/4OH^- = +0.40V$ $Fe(OH)_3/Fe(OH)_2 =$	/ 0.56V	(2)	
	E [●] _{cell} = +	∙0.46V (allow –0.37) in acid, but +0.96V in alkali <i>or</i> E [●]	$(OH^{-}) > E^{e}(H^{+})$	(1)	
	If E_{cell} is	more positive it means a greater likelihood of reaction	n	(1)	[4]

(d) (1) CH₃CO₂H (1) and

[5]

(e) (i) (CH₃)₂C(OH)–CH₂OH

(1)

(ii) reaction I: (cold dilute) KMnO₄ ("cold" not needed, but "hot" or "warm" negates) reaction II: Cr₂O₇²⁻ + H⁺ + **distil** (1) (1) [3]

Page 6		6	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9701	43	
5	(a) (i)		ause the carbons are sp ² / trigonal planar / bonded at bonds / orbitals	120° <i>or</i> are joined	(1)	
	(ii)		ause the $\underline{\pi}$ electrons / double bonds are delocalised trons are evenly distributed / spread out	/ in resonance <i>or</i>	(1)	[2]
	(b) (i)		$D_3 + 2H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$ $NO_3 + H_2SO_4 \rightarrow H_2NO_3^+ + HSO_4^- \text{ or } \rightarrow H_2O + NO_2^+$	- + HSO4-	(1)	
	(ii)		trophilic substitution hanism:		(1)	
			NO_2^+ H $NO_2^ H$ H NO_2^-			
			y arrows from benzene to NO_2^+ , and showing loss of H ect intermediate (with "+" in the 'horse-shoe')	+	(1) (1)	[4]
	(c) C1	₂ + A/	Cl_3 / FeCl_3 / Fe / Al / I_2 (aq or light negates this mark)		(1)	[1]
	(d) (i)	Y is	chlorobenzene (1) Z is 4-chloronitrobenzene (1)		(2)	
	(ii)	Sn /	Fe + (conc) HCl		(1)	
		HC1	is conc , and second step is to add NaOH(aq)		(1)	
	(iii)	Br	only 2 x Br, but ignore orientation B			

(4) [8]

	Page 7	Mark Scheme: Teachers' version Syllabus Pa	per
			13
6	(a) (i)	Primary – the amino acid sequence / order / chain <i>or</i> diag. e.g. NH-C-CO-NH-C-CO <i>or</i> amino acids bonded by covalent / amide / peptide bonds ((1)
	(ii)	Tertiary – the coiling / folding of the protein / polypeptide chain due to interactions between side-chains on the amino acids <i>or</i> the structure which gives the protein its 3-D / globular shape ((1) [2]
	(b) (i)	Diagram: Minimum is CH_2S - SCH_2 ([1]
	(ii)	Oxidation / dehydrogenation / redox ((1)
	(iii)	Hydrogen / H bonds; ionic interactions / bonds <i>or</i> ion-dipole <i>or</i> salt bridges; van der Waals' <i>or</i> id-id <i>or</i> induced / instantaneous dipole forces (ignore hydrophobic interactions) (2)	[2) [4]
	(c) (i)	Hydrogen bonds ((1)
	(ii)	Correct new strand present (see below) needed Diagram showing C=O bonding to N-H in new strand \checkmark and N-H bonding to C=O in new strand \checkmark e.g. $\downarrow \qquad \qquad$	
			(2) [3]

(d) There are bonds *or* S-S bridges / linkages between the layers / sheets
(in β-keratin) (but only van der Waals interactions between the layers in silk)
(1) [1]

[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	43

7 (a) The amino acid is uncharged / neutral / a zwitterion *or* charges balance / are equal (NOT "is non-polar")

It is equally attracted by the anode / + and the cathode / – or attracted by neither

The pH of the buffer is at the isoelectric point/IEP of the amino acid any two \checkmark (2) [2]

(b) (at pH 10), H₂NCH₂CO₂⁻ *or* NH₂CH₂COO⁻

(С)
۰.	-	,

amino acid	relative size	charge	
А	small(est) (1)	–ve	
В	large(st) (3)	–ve	
С	middle (2)	+ve	

(numbers are OK to show relative sizes)

Mark each row

(3) [3]

(1)

[1]

- (d) (i) lys val ser ala gly ala gly asp
 - (ii) gly ala gly (1)
 - (iii) aspartic acid (or lysine) (1) [4]

[Total: 10]

(2)

	Page 9			Mark Scheme: Teachers		Syllabus	Paper	
				GCE AS/A LEVEL – May/	June 2010	9701	43	
8	(a)			II – since electrons are used up circuit)	o / required / gaine	d / received (fro	om (1)	[1]
	(b)	(Pb ² (Pb0	²⁺ + 2 O ₂ + 4	/	$E^{\circ} = -0.13V$ $E^{\circ} = +1.47V$ two correct E° valu	es	(1)	
		Cell	volta	ge is 1.6(0) (V)			(1)	[2]
	(c)	(i)					(1)	
		(ii)		$^{\prime}$ are less heavy / poisonous / to c) H_2SO_4 within them	xic / polluting <i>or</i> a	re safer due to	no (1)	[2]
	(d)	(i)	Plati	num or graphite / carbon			(1)	
		(ii)	hydro	need large quantities of compres ogen would need to be liquefied o osive / combustible				[2]
	(e)	Glas	SS:	saves energy – the raw materials <i>or</i> making glass is energy-intensi		ole / cheap	(1)	
		Stee	el:	saves energy – extracting iron fro or mining the ore is energy intens or saves a resource – iron ore (N	sive	•	er one (1)	
		Plas	stics:	saves a valuable / scarce resour	ce: (crude) oil / pet	roleum	(1)	[3]
							[Total:	10]