

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		9701/2
Paper 2 Struct	ured Questions AS Core	May/June 2010
		1 hour 15 minutes
Candidates and	swer on the Question Paper.	

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs, or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE ON ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units. A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question. At the end of the examination, fasten all your work securely together.

For Exam	iner's Use
1	
2	
3	
4	
5	
Total	

This document consists of 11 printed pages and 1 blank page.

Answer **all** the questions in the spaces provided.

1 Hydrazine, N₂H₄, can be used as a rocket fuel and is stored as a liquid. It reacts exothermically ^{Use} with oxygen to give only gaseous products.

The enthalpy change of a reaction such as that between hydrazine and oxygen may be calculated by using standard enthalpy changes of formation.

(a) Define the term standard enthalpy change of formation, ΔH_{f}° .

.....[3]

(b) Hydrazine reacts with oxygen according to the following equation.

 $N_2H_4(I) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$

(i) Use the data in the table to calculate the standard enthalpy change of this reaction.

compound	$\Delta H_{\rm f}^{\circ}/{\rm kJmol^{-1}}$
N ₂ H ₄ (I)	50.6
H ₂ O(g)	-241.8

 $\Delta H^{\circ} = \dots kJ \text{ mol}^{-1}$

For Examiner's

 (ii) Although the above reaction is highly exothermic, hydrazine does not burn spontaneously in oxygen.
 Suggest a reason for this.

.....

(d) Deduce the oxidation state of nitrogen in hydrazine.

.....

- (c) The bonding in hydrazine is similar to that in ammonia.
 - (i) Showing outer-shell electrons only, draw a 'dot-and-cross' diagram of an ammonia molecule.

(ii) Draw a diagram to show the three-dimensional shape of an ammonia molecule.

(iii) Draw a diagram to show the shape of a hydrazine molecule. Show clearly which atom is joined to which and show clearly the value of **one** bond angle.

[4]

[1]

[Total: 12]

2 The alkali metals are a series of six elements in Group I of the Periodic Table. The first ionisation energy of these elements shows a marked trend as the Group is descended.

For Examiner's Use

(a) Define the term *first ionisation energy*.

-[2]
- (b) (i) State and explain the trend in first ionisation energy as Group I is descended.

.....

.....

(ii) Suggest how this trend helps to explain the increase in the reactivity of the elements as the Group is descended.

[3]

(c) In a redox reaction, 0.83g of lithium reacted with water to form 0.50 dm³ of aqueous lithium hydroxide.

 $2\text{Li}(\text{s}) + 2\text{H}_2\text{O}(\text{I}) \rightarrow 2\text{LiOH}(\text{aq}) + \text{H}_2(\text{g})$

(i) Calculate the amount, in moles, of lithium that reacted.

4

For Examiner's Use

(iii)	Calculate the concentration, in mol dm ⁻³ , of the LiOH(aq) formed.
-------	--

L~1

(d) When heated in chlorine, all of the alkali metals react to form the corresponding chloride.

Describe what you see when sodium is heated in chlorine and write a balanced equation for the reaction.

description

equation

[Total: 12]

[Turn over

3 This question refers to the elements shown in the section of the Periodic Table below.

							Н										He	
Li	Be											В	С	Ν	0	F	Ne	
Na	Mg											Al	Si	Ρ	S	Cl	Ar	
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	

- (a) From this list of elements, identify in **each** case **one** element that has the property described. Give the symbol of the element.
 - (i) an element that sinks in cold water and reacts readily with it

.....

(ii) an element that forms an oxide that is a reducing agent

.....

(iii) the element that has the largest first ionisation energy

.....

(iv) the metal in Period 3 (Na to Ar) that has the smallest cation

.....

(v) the element which has a giant molecular structure **and** forms an oxide which also has a giant molecular structure

.....

(vi) the element in Period 3 (Na to Ar) with the greatest electrical conductivity

.....

[6]

For Examiner's Use

(b) From the section of the Periodic Table above, identify **two** elements whose hydrides form hydrogen bonds between their molecules.

..... and

[1]

7

- [5]
- [Total: 12]

.

			6							
4	Orgar	nic reactions involve subs	tances which may be		For Examiner's					
	atoms, molecules, ions or free radicals.									
	We al	so apply the terms								
	e	electrophilic, nucleophilic,	addition, elimination and s	substitution						
	to org	anic reactions.								
	Consi	ider the following reaction	IS.							
	C	$CH_4 + Cl_2 \rightarrow CH_3Cl +$	HCl	reaction 1						
	C	$CH_3CH_2OH \rightarrow CH_2=CH_2$	₂ + H ₂ O	reaction 2						
	C	$CH_{3}I + OH^{-} \rightarrow CH_{3}OH$	+ I [−]	reaction 3						
	C	$CH_3COCH_3 + HCN \rightarrow$	CH ₃ C(OH)(CN)CH ₃	reaction 4						
	• •	Using the terms mentioned above, state as clearly as you can the nature of each of the following reactions.								
	r	eaction 1								
	r	reaction 2								
	S	substances.	eactions above, suggest a reaction you are consideri	a formula for each of the following ing.						
	(i) one substance that is	an addition product							
		reaction	addition product							
	(i	i) one substance that is	a leaving group							
		reaction	leaving group							
	(ii	 i) one substance that b 	ehaves as an electrophile							
		reaction	electrophile							
				[0]						

(c)	What is meant by the term <i>nucleophile</i> ?	
		[1]
(d)	Reactions 3 and 4 involve nucleophiles.	
	For each reaction, give the formula of the nucleophile.	
	reaction 3	
	reaction 4	
		[2]
(e)	One characteristic reaction of ethene is its ability to decolourise bromine.	
	$CH_2=CH_2 + Br_2 \rightarrow BrCH_2CH_2Br$	
	In this reaction, ethene behaves as a nucleophile.	
	Suggest an explanation for how ethene can behave in this way.	
		[1]
	[Total	: 9]

9

© UCLES 2010

[Turn over

5	Lactic acid, 2-hydroxypropanoic acid, CH ₃ CH(OH)CO ₂ H, occurs naturally in sour milk and in our muscles when we take hard exercise. Lactic acid is chiral and shows stereoisomerism.						
	• •		Illy displayed structures of the two optical isomers of lactic a with an asterisk (*) the chiral carbon atom in the lactic acid				
				[3]			
	(b)	Lactic a	acid may be synthesised from ethanol by the following route.				
			$\xrightarrow{\text{step 1}} \text{CH}_{3}\text{CHO} \xrightarrow{\text{step 2}} \text{CH}_{3}\text{CH(OH)CN} \xrightarrow{\text{step 3}} \text{CH}_{3}\text{CH}_{3}\text{CH}_{3} \xrightarrow{\text{ch}_{3}\text{CH}_{3}\text{CH}_{3} \xrightarrow{\text{ch}_{3}\text{CH}_{3}} \xrightarrow{\text{ch}_{3}\text{CH}_{3} \xrightarrow{\text{ch}_{3}\text{CH}_{3}} \xrightarrow{\text{ch}_{3}\text{CH}_{3} \xrightarrow{\text{ch}_{3}\text{CH}_{3}} \xrightarrow{\text{ch}_{3}\text{CH}_{3} \xrightarrow{\text{ch}_{3}\text{CH}_{3} \xrightarrow{\text{ch}_{3}\text{CH}_{3}} \xrightarrow{\text{ch}_{3}\text{CH}_{3} \xrightarrow{\text{ch}_{3} \xrightarrow{\text{ch}_{3}\text{CH}_{3}} \xrightarrow{\text{ch}_{3} \xrightarrow{\text{ch}_{3} \xrightarrow{\text{ch}_{3}\text{CH}_{3}} \xrightarrow{\text{ch}_{3} \xrightarrow$				
		Give the	e reagent(s) and essential condition(s) for each step.				
			reagent(s) condition((s)			
	step 1 step 2						
	S	tep 3					

[6]

9701/23/M/J/10

© UCLES 2010

During exercise, lactic acid is produced in our muscles from pyruvic acid, CH_3COCO_2H . This reaction occurs in the presence of the enzyme lactic acid dehydrogenase.

(c) (i) What type of chemical compound is the enzyme lactic acid dehydrogenase?

.....

- (iv) What chemical reagent would be used to convert pyruvic acid into lactic acid?

 $CH_3COCO_2H \rightarrow CH_3CH(OH)CO_2H$

.....

[Total: 15]

For Examiner's Use

[6]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.