

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

	CANDIDATE NAME		
	CENTRE CANDIDAT NUMBER NUMBER	E	
* 8 3 4 2 8 7 0 4 0	CHEMISTRY Paper 4 Structured Questions Candidates answer on the Question Paper. Additional Materials: Data Booklet	-	9701/41 June 2010 5 minutes
*	READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working.	٦.	
	Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.	For Examine	er's Use
	Section A Answer all questions.	1	
	Section B Answer all questions.	2	
	You may lose marks if you do not show your working or if you do not use appropriate units.	4	
	A Data Booklet is provided. At the end of the examination, fasten all your work securely together.	5	
	The number of marks is given in brackets [] at the end of each question or part question.	6	
		7	
		8	
		9	
		10 Total	

This document consists of **19** printed pages and **1** blank page.

Section A

For Examiner's Use

Answer all questions in the spaces provided.

(a) Phosphorus and sulfur are two non-metallic elements on the right hand side of the 1 Periodic Table. For each of these elements describe the observations you would make when it burns in air, and write a balanced equation for the reaction.

phosphorus

observation equation

sulfur

observation	•••••
equation	 [4]

- (b) White phosphorus, P_4 , is produced commercially by heating calcium phosphate(V) rock with a mixture of silica, SiO₂, and coke in an electric furnace at 1400 °C. Calcium silicate, $CaSiO_3$, and carbon monoxide are the other products.
 - (i) Balance the following equation which represents the overall process.

$$_$$
 Ca₃(PO₄)₂ + $_$ SiO₂ + $_$ C \rightarrow $_$ P₄ + $_$ CaSiO₃ + $_$ CO

When heated to 400 °C in the absence of air, white phosphorus is changed into the red form of the element. The following table lists some of the properties of the two forms, which are known as allotropes.

allotrope	electrical conductivity	melting point /°C	solubility in water	solubility in benzene
white	none	44	insoluble	soluble
red	none	500	insoluble	insoluble

(ii) Suggest the type of structure and bonding in each allotrope.

allotrope type of structure		type of bonding
white		
red		

/:::\ л. f diadr . ь. 0 . Ims

For Examiner's Use

white phosphorus	red phosphorus

[Total: 11]

2 (a) Describe three characteristic chemical properties of transition elements that are not shown by Group II elements.

For Examiner's Use

.....[3]

(b) When $NH_3(aq)$ is added to a green solution containing $Ni^{2+}(aq)$ ions, a grey-green precipitate is formed. This precipitate dissolves in an excess of $NH_3(aq)$ to give a blue-violet solution.

Suggest an explanation for these observations, showing your reasoning and including equations for the reactions you describe.

[4]

(c) Dimethylglyoxime, DMG, is a useful reagent for the quantitative estimation of nickel. It forms an insoluble salt with nickel ions according to the following equation.

 $Ni^{2+}(aq) + C_4H_8N_2O_2 \longrightarrow NiC_4H_6N_2O_2(s) + 2H^+(aq)$ DMG Ni-DMG

A small coin of mass 3.40 g was dissolved in nitric acid and an excess of DMG was added. The precipitated Ni-DMG was filtered off, washed and dried. Its mass was 4.00 g.

Calculate the % of nickel in the coin.

percentage of nickel =% [3]

[Total: 10]

3 (a) Describe how the behaviour of the oxides of tin and lead in their +4 oxidation states For differ on heating. Examiner's Use[1] (b) Explain the following by using data from the Data Booklet where appropriate, and writing equations for all reactions. A sample of liquid $PbCl_4$ is placed in a flask and the flask is gently warmed. A gas (i) is evolved and a white solid is produced. When the gas is bubbled through KI(aq), purple fumes are produced. (ii) Repeating the same experiment using liquid $SnCl_{4}$ instead of PbCl₄ results in no evolution of gas, and no reaction with KI(aq). [4] (c) The molecule dichlorocarbene, CCl_2 , can be produced under certain conditions. It is highly unstable, reacting with water to produce carbon monoxide and a strongly acidic solution. Suggest the electron arrangement in CCl₂ and draw a dot-and-cross diagram (i) showing this. Predict the shape of the molecule. Construct an equation for the reaction of CCl_2 with water. (ii)

.....

[3]

[Total: 8]

Ethanolamine and phenylamine are two organic bases that are industrially important. 4 For Ethanolamine is a useful solvent with basic properties, whilst phenylamine is an important starting material in the manufacture of dyes and pharmaceuticals.

Examiner's Use

The following table lists some of their properties, together with those of propylamine.

compound	formula	<i>M</i> _r	boiling point/°C	solubility in water
propylamine	$CH_3CH_2CH_2NH_2$	59	48	fairly soluble
ethanolamine	HOCH ₂ CH ₂ NH ₂	61	170	very soluble
phenylamine		93	184	sparingly soluble

(a) Suggest why the boiling point of ethanolamine is much higher than that of propylamine. Draw a diagram to illustrate your answer.

.....

[2]

(b) Describe and explain the relative basicities of propylamine and phenylamine.

.....[2] (c) Write an equation showing ethanolamine acting as a Brønsted-Lowry base.

.....[1]

(d) Propylamine can be synthesised from bromoethane by the following route.

[Total: 12]

For

Use

5 Although standard electrode potentials are measured for solutions where the concentrations of ions are 1.0 mol dm⁻³, cells used as sources of battery power tend to operate with more concentrated solutions. This question concerns the electrode reactions involved in the hydrogen-oxygen fuel cell and the lead-acid car battery.

For Examiner's Use

(a) In the hydrogen-oxygen fuel cell, H₂(g) and O₂(g) are fed onto two inert electrodes dipping into NaOH(aq).

	hydrogen - oxygen
The	following reactions take place.
	left hand electrode (cathode): $H_2(g) + 2OH^-(aq) \rightarrow 2H_2O(l) + 2e^-$
	right hand electrode (anode): $O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-(aq)$
(i)	Use the Data Booklet to calculate E_{cell}^{\bullet} for this reaction.
(ii) (iii)	Construct an equation for the overall reaction. By using one of the phrases <i>more positive, more negative</i> or <i>no change</i> , deduce
()	the effect of increasing [OH-(aq)] on the electrode potential of
	the left hand electrode
	the right hand electrode
(iv)	Hence deduce whether the overall E_{cell} is likely to <i>increase</i> , <i>decrease</i> or <i>remain the same</i> , when [OH ⁻ (aq)] increases. Explain your answer.
(v)	Suggest one other reason why a high [NaOH(aq)] is used in the fuel cell.
	[6]

(b) In the cells of a lead-acid car battery the following reactions take place.

In th	ne cells of a	lead-acid car battery the following reactions take place.	For		
	cathode:	$Pb(s) \rightarrow Pb^{2+}(aq) + 2e^{-}$	Examiner's Use		
	anode:	$PbO_2(s) + 4H^+(aq) + 2e^- \rightarrow Pb^{2+}(aq) + 2H_2O(I)$			
(i)	Use the Da	ata Booklet to calculate E_{cell}^{\bullet} for this reaction.			
(ii)	Construct a	an equation for the overall reaction.			
The proc	e electrolyte duced at the	in a lead-acid cell is $H_2SO_4(aq)$. Most of the $Pb^{2+}(aq)$ ions that are electrodes are precipitated as the highly insoluble $PbSO_4(s)$.			
(iii)	Construct a	an equation for the overall cell reaction in the presence of H_2SO_4 .			
(iv)	the cathod electrolyte	ering the effect of decreasing $[Pb^{2+}(aq)]$ on the electrode potentials of e and the anode, deduce the effect of the presence of $H_2SO_4(aq)$ in the on the overall E_{cell} . her the E_{cell} will <i>increase</i> , <i>decrease</i> or <i>remain the same</i> .			
Overall <i>E</i> _{cell} will					
	Explain you	ur answer.			
		[5]			
			1		

[Total: 11]

Acyl chlorides are useful intermediates in organic syntheses. For Examiner's Use (a) (i) State a suitable reagent for converting carboxylic acids into acyl chlorides. Construct an equation for the reaction between ethanoic acid, CH₃CO₂H, and the (ii) reagent you have stated in (i). [2] (b) (i) In the boxes provided draw the structures of the compounds formed when benzoyl chloride undergoes the following reactions. COCl C_2H_5OH NH_3 Ш В Α (ii) Name the functional group in compound A compound **B** (iii) What type of reaction is reaction II? [5]

6

(c) (i) Suggest suitable acyl chlorides to use in the following reaction. Draw their structures in the boxes provided.

For

Examiner's Use 7 Predict the products of the following reactions and draw their structures in the boxes provided. Note that the molecular formula of the final product is given in each case.

[Total: 6]

For

Examiner's

BLANK PAGE

13

Section B

Answer **all** questions in the spaces provided.

- 8 The molecule that contains the genetic information for an individual organism is called deoxyribonucleic acid, DNA.
 - (a) The diagram shows part of a DNA molecule. Study the diagram and identify the blocks labelled J, K, L and M as accurately as you can.

block letter	identity
J	
к	
L	
М	

[3]

(b) The DNA molecule is formed from two polymer strands. What stops these strands from separating from each other?

.....[2]

.....

For Examiner's Use

(-)	List three differences hat uses the structures of DNA and DNA	
(C)	List three differences between the structures of DNA and RNA.	Fo
	1	Exam Us
	1	
	2	
	3	
	0	
	[3]	
d)	Outline the different roles of mRNA and tRNA in the processes of transcription and	
	translation.	
	mRNA	
	tRNA	
	[2]	
	[Total: 10]	

- A range of modern analytical techniques has made the identification of molecules, and atoms 9 in compounds, much more rapid than traditional laboratory analysis. Examiner's
 - (a) One instrumental technique is NMR spectroscopy, which uses the fact that under certain conditions protons can exist in two different energy states. Explain how these different energy states arise.

.....[2]

(b) When methanol, CH₃OH, is examined using NMR spectroscopy, it absorbs at two different frequencies. Explain why, and predict the relative areas of the two peaks.

.....[2]

(c) The NMR spectrum below is that of one of three possible isomers of molecular formula $C_3H_6O_2$.

For

Use

© UCLES 2010

The compound could be propanoic acid, methyl ethanoate or ethyl methanoate.

(i) In the boxes provided, draw the structures of the three compounds.

	рі	ropanoic acid		methyl eth	anoate	·	ethyl methanoate	
	(ii)			ound produced ach of the peak		ım show	n, indicating wh	ich protons
	(iii)						peak at δ11.0. roton(s) respons	ible for this
		compound .						
		proton(s)						[4]
(d)		y crystallogra tal of a comp		technique use	d to identify	the rela	tive positions of	
	(i)	What further use of X-ray			anic macro	molecul	es can be dedu	ced by the
	(ii)	Which atoms	s cannot	be located by 2	X-ray crysta	llograph	y?	
								[2]
								[Total: 10]

For Examiner's Use

- 10 The nature and variety of drugs that are available to treat diseases or life-threatening conditions has never been greater. At the same time, we are much better able to deliver Examiner's drugs to their targets in the body.
 - (a) Some drugs have to be given by injection, rather than by mouth. Name a functional group in a drug molecule that might be broken down by the acid in the stomach.
 -[1]
 - (b) The anti-cancer drug *Taxol* could be broken down if taken by mouth.

Taxol

Circle two bonds, each in a different functional group, that could be hydrolysed in the digestive system. [2]

18

For

Use

(c) One way of protecting drug molecules that are taken by mouth is to enclose them in liposomes. These are artificially created spheres made from phospholipids which have an ionic phosphate 'head' and two hydrocarbon 'tails'.

For Examiner's Use

(i) State in which area of the liposome, **A**, **B** or **C**, each of the following types of drug would be carried.

a hydrophilic drug

a hydrophobic drug

(ii) For the remaining position, **A**, **B** or **C**, explain why this would **not** be a suitable area for carrying a drug.

.....

[3]

(d) One way of carrying drugs in the bloodstream is to attach them by a chemical bond to a polymer. One such polymer is polyethylene glycol or PEG.

 $HO - (CH_2 - CH_2 - O)_n - H$

(i) Where would a drug be attached to a molecule of PEG?

(ii) Suggest why a liposome can carry more drug molecules than a molecule of PEG.

.....

[2]

(e)	Better-targeted delivery of drugs allows smaller amounts to be used, which brings significant advantages. Suggest two advantages of using smaller drug doses.	For Examiner's Use
	[2]	
	[Total: 10]	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.