## MARK SCHEME for the May/June 2011 question paper

## for the guidance of teachers

## 9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



| Pa    | Page 2     |                |                                  |                                 |                      | e: Teachei<br>EL – May/J                                                                                                             |        |                   |                           |                                          | Sylla<br>97          |                | Paper<br>42                                      |
|-------|------------|----------------|----------------------------------|---------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|---------------------------|------------------------------------------|----------------------|----------------|--------------------------------------------------|
| l (a) | [H⁺]<br>pH | ] = √<br>= _ 0 | (0.05 ×<br>og <sub>10</sub> (5.2 |                                 | $()^{-4}) = 5$       | 5.29 × 10 <sup>-3</sup>                                                                                                              |        |                   |                           |                                          |                      |                | [1]<br>[1]<br><b>[2]</b>                         |
| (b)   | (i)        | •              | nsted-L<br>librium               | owry)                           | acid-b               | ase/proton                                                                                                                           | transf | fer/nei           | utralis                   | ation                                    | /exoth               | ermic/re       | eversible/<br>[1]                                |
|       | (ii)       |                |                                  |                                 |                      |                                                                                                                                      |        |                   |                           |                                          | Ð                    |                |                                                  |
|       |            | н ‡            | ••<br>N ‡<br>++<br>H             | Н                               | ł                    | + <sup>●</sup> ●<br>+ <sup>‡</sup> F <b>:</b><br>••                                                                                  |        | -<br>H ‡<br>-     | H<br>●●<br>N ₽<br>●+<br>H | 2 H                                      | •<br>[ •<br>[ •<br>• | 폐              |                                                  |
|       |            |                | [1]                              |                                 |                      | [1]                                                                                                                                  |        |                   |                           | [1]                                      |                      |                | 3 x [1]                                          |
|       | (iii)      | cova<br>dativ  | e: betw                          | etween N<br>veen N 8<br>en NH₄⁺ | ίΗ                   | <sup>-</sup> N <sup>+</sup> & F <sup>-</sup> <i>o</i> ι                                                                              | r amm  | onium             | n and f                   | fluori                                   | d <b>e</b> (ie       | in word        | [1]<br>[1]                                       |
|       |            |                |                                  |                                 |                      | rge) ions                                                                                                                            | amm    | onian             |                           |                                          | <u>uo</u> (1.0       |                | [1]                                              |
|       | (iv)       | high<br>ا low  | temper<br>pressur                | e, becau                        | ecause<br>ise reve   | reverse rea                                                                                                                          | on cau |                   |                           |                                          | in no.               | of <u>gase</u> | [1]<br><u>ous</u> molecules<br>[1]<br><b>[9]</b> |
| (c)   | (i)        | 4NH            | ₃ + CuS                          | 5 + 2O <sub>2</sub>             | → [Cu                | (NH <sub>3</sub> ) <sub>4</sub> ]SO <sub>4</sub>                                                                                     | Ļ      |                   |                           |                                          |                      |                | [1]                                              |
|       | (ii)       | deep           | o/dark/r                         | oyal blue                       | e <i>or</i> pur      | ple [NOT v                                                                                                                           | iolet] |                   |                           |                                          |                      |                | [1]                                              |
|       | (iii)      |                |                                  |                                 |                      | nge to ligh<br>r [Cu(H <sub>2</sub> O) <sub>6</sub>                                                                                  |        |                   |                           |                                          |                      |                |                                                  |
|       |            |                |                                  | •••                             | ,                    | ) by H <sub>2</sub> O                                                                                                                | o] 0,  | [04(11            | 2 <b>0</b> ///            | ••••37a                                  | -n <b>j</b> , ,      |                | [1]<br>[4]                                       |
| (d)   |            |                |                                  |                                 |                      | placement                                                                                                                            |        |                   |                           |                                          |                      | d by ch        | [1]<br>loride")                                  |
|       |            |                |                                  |                                 |                      | possibilitie:<br>)) <sub>6</sub> ] <sup>2+</sup> + nC <i>t</i>                                                                       |        | Cu(H <sub>2</sub> | O) <sub>6-n</sub> C       | C <i>l</i> <sub>n</sub> ] <sup>2–n</sup> | ' + nH <sub>2</sub>  | <u>2</u> O     | [1]<br>[1]                                       |
|       | [Cu        | $(H_2O)$       | <sub>6</sub> ] <sup>2+</sup> + 2 | $Cl \rightarrow  $              | [Cu(H <sub>2</sub> C | / [CuC <i>l</i> <sub>n</sub> ] <sup>2–n</sup><br>D) <sub>4</sub> C <i>l</i> <sub>2</sub> ] + 2H<br><sup>2–</sup> + 6H <sub>2</sub> O |        | oduct.            | Exan                      | nples                                    | from I               | many po        | ossible are:                                     |
|       | equ        | ation          | could i                          | nclude F                        | IC <i>l</i> on t     | he LHS, for $l_4 + 2H^+ + 0$                                                                                                         |        |                   | CuC                       | :l4 <sup>2-</sup> +                      | 4H⁺ +                | ∙ 6H₂O         | [3]                                              |
|       |            |                |                                  |                                 |                      |                                                                                                                                      |        |                   |                           |                                          |                      | [Tota          | al: 18 max 17]                                   |
|       |            |                |                                  |                                 |                      |                                                                                                                                      |        |                   |                           |                                          |                      |                |                                                  |



(ii) m. pt. trend: (from) giant/macro molecular/covalent to metallic bonding (or implied from at least two specific examples, e.g. diamond and tin) [1] (mention of *simple* covalent anywhere negates this mark)

conductivity trend: increasing delocalisation of electrons (down the group) [1] or e<sup>-</sup> are more free-moving (or implied from at least two examples, e.g. Si is semiconductor, lead has delocalised e<sup>-</sup>)

[6]

| (b) | (i) | heat PbO <sub>2</sub> , or T > 200°C or $\Delta$ on arrow: PbO <sub>2</sub> $\rightarrow$ PbO + ½O <sub>2</sub> (N.B. ½O <sub>2</sub> NOT [O]) | [1] |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     |                                                                                                                                                |     |

| (ii)  | (burning CO in air produces $CO_2$ ):CO + $\frac{1}{2}O_2 \rightarrow CO_2$<br>blue flame (ignore ref to limewater test)                                                                                                                                              | [1]<br>[1]          |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| (iii) | e.g. SnC $l_2(aq)$ will turn KMnO <sub>4</sub> from purple to colourless<br>5Sn <sup>2+</sup> + 2MnO <sub>4</sub> <sup>-</sup> + 16H <sup>+</sup> $\rightarrow$ 5Sn <sup>4+</sup> + 2Mn <sup>2+</sup> + 8H <sub>2</sub> O                                             | [1]<br>[1]          |
|       | or SnCl <sub>2</sub> (aq) will turn K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> from orange to green<br>3Sn <sup>2+</sup> + Cr <sub>2</sub> O <sub>7</sub> <sup>2–</sup> + 14H <sup>+</sup> $\rightarrow$ 3Sn <sup>4+</sup> + 2Cr <sup>3+</sup> + 7H <sub>2</sub> O | [1]<br>[1]          |
|       | or SnCl <sub>2</sub> (aq) will turn Fe <sup>3+</sup> from orange/brown/yellow to green/colourless Sn <sup>2+</sup> + 2Fe <sup>3+</sup> $\rightarrow$ Sn <sup>4+</sup> + 2Fe <sup>2+</sup>                                                                             | [1]<br>[1]          |
|       | or SnCl <sub>2</sub> (aq) will turn Cu <sup>2+</sup> (aq) from blue to colourless or give a pink/brown/co coloured ppt.<br>Sn <sup>2+</sup> + Cu <sup>2+</sup> $\rightarrow$ Sn <sup>4+</sup> + Cu                                                                    | pper-<br>[1]<br>[1] |

Other possible oxidants ( $E^{e}$  must be > +0.2V) include:  $S_2O_8^{2-}$ ,  $H_2O_2$ ,  $Cl_2$ ,  $Br_2$ ,  $I_2$  and  $Ag^+$ . No observations with the first three of these, but this should be stated explicitly, e.g. "no colour change".

[5]

[Total: 11 max 10]

| Page 4           | 4            | Mark Scheme: Teachers' version                                                                                                                                                                      | Syllabus                                                                          | Paper             |
|------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------|
|                  |              | GCE A LEVEL – May/June 2011                                                                                                                                                                         | 9701                                                                              | 42                |
| 6 <b>(a)</b> L = | = F/e c      | prF=Le                                                                                                                                                                                              |                                                                                   | [1]<br><b>[1]</b> |
| (b) (i)          |              |                                                                                                                                                                                                     |                                                                                   |                   |
|                  |              | anode A cathode                                                                                                                                                                                     |                                                                                   |                   |
|                  | allo         | w the conventional symbol $-$ to represent $+$ (t                                                                                                                                                   | he "P.S." is not requi                                                            | red)              |
|                  | amn<br>anoc  | ect cell (2 electrodes + PS circuit)<br>neter in series<br>de and cathode of the right polarity [IN WORDS]<br>$O_4(aq)$ or CuC $l_2(aq)$ or Cu <sup>2+</sup> (aq) or soln or 1 mol dm <sup>-3</sup> |                                                                                   | [1]<br>[1]<br>[1] |
| (ii)             | n(Cι<br>n(e⁻ | a) = $(52.542-52.243)/63.5 = 4.71 \times 10^{-3} \text{ mol} (4.67)$<br>) required = $4.71 \times 10^{-3} \times 2 = 9.42 \times 10^{-3} \text{ mol} (9.34)$                                        | × 10 <sup>-3</sup> )<br>↓ × 10 <sup>-3</sup> )                                    | [1]<br>ecf [1]    |
|                  | amo<br>no. c | unt of electricity passed = $0.5 \times 30 \times 60 = 900 \text{ C}$<br>of electrons passed = $900/1.6 \times 10^{-19} = 5.625 \times 10^{21}$                                                     |                                                                                   | [1]<br>ecf [1]    |
|                  |              | f = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1                                                                                                                                                           | <b>7</b> · · · <b>4 0</b> <sup>23</sup> · · · · <b>1</b> <sup>-1</sup> / <b>0</b> | 00 1023           |

no of electrons/n(e<sup>-</sup>) = L =  $5.625 \times 10^{21}/9.42 \times 10^{-3} = 5.97 \times 10^{23} \text{ mol}^{-1} (6.02 \times 10^{23}) \text{ ecf [1]}$ 

(values in italics are if candidate has used  $A_r = 64$ , not 63.5. No last mark if not 3 s.f.: correct ans = [5]) [9]

(c)

| compound          | product at anode | product at cathode |
|-------------------|------------------|--------------------|
| AgF               | O <sub>2</sub>   | Ag                 |
| FeSO <sub>4</sub> | O <sub>2</sub>   | H <sub>2</sub>     |
| MgBr <sub>2</sub> | Br <sub>2</sub>  | H <sub>2</sub>     |

 $\begin{array}{l} \mbox{6 correct} \Rightarrow \mbox{[5]} \\ \mbox{5 correct} \Rightarrow \mbox{[4] etc.} \end{array}$ 

Names can be used instead of symbols. If the atomic symbol (e.g. Br or H or O) is used instead of the molecular formula (e.g.  $Br_2$  etc.) then deduct [1] mark only for the whole table.

[5]

[Total: 15]

| Page 5 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2011    | 9701     | 42    |

4 (a) (i) (allow displayed, structural or skeletal formula)



chain<br/>repeat unit[1](ii)C should be CH2=CHOH (or skeletal formula)[1](iii)C is CH3CH=O (or skeletal formula)[1](iv)e.g. add (2,4-)DNPH or DNP or Brady's reagent<br/>orange or red ppt forms (NOT yellow)<br/>(or could use Fehling's or Tollens',ecf [1]

or  $H^+ + Cr_2O_7^{2-}$ : orange to green, or  $H^+ + MnO_4^-$ : purple to colourless) [6]

(b) (i) (allow displayed, structural or skeletal formula)



D correct repeat unit bracketed (any 3 atoms in chain)

(ii) ester

[1]

[1]

- (iii) **E** is CH<sub>3</sub>CH<sub>2</sub>CH(OH)CO<sub>2</sub>H (*or* skeletal structure etc.)(2-hydroxybutanoic acid) [1] allow ecf here from the formula of the repeat unit shown in **(b)(i)**
- (iv) <u>condensation</u> (polymerisation)
- (v) they have the same "molecular" formula or C<sub>4</sub>H<sub>6</sub>O<sub>2</sub> (do NOT allow empirical formula) or same no. and type of atoms or same functional group or both are esters or they are isomers

[5]

[1]

| Page 6 | Mark Scheme: Teachers' version                                        | Syllabus                         | Paper             |
|--------|-----------------------------------------------------------------------|----------------------------------|-------------------|
|        | GCE A LEVEL – May/June 2011                                           | 9701                             | 42                |
| .,.,.  | otical isomerism ( <i>or</i> chiral)                                  |                                  | [1]               |
| (ii)   | CO <sub>2</sub> H                                                     |                                  |                   |
| (le    | F G<br>etters may be reversed)(allow ecf from <b>E</b> , also allow e | ecf for <b>G</b> from <b>F</b> ) | [1] + [1]         |
| ci     | s-trans <i>or</i> geometrical isomerism                               |                                  | [1]<br><b>[4]</b> |
|        |                                                                       |                                  | [Total: 15]       |

| Page 7 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2011    | 9701     | 42    |

5 (a) acidity: ethanol < water

[1] due to +ve inductive effect of C<sub>2</sub>H<sub>5</sub> group or C<sub>2</sub>H<sub>5</sub> gives e<sup>-</sup> to oxygen or intensifies e<sup>-</sup> (in O-H [1] bond) [1] acidity: phenol > water

due to stabilisation of the anion/anionic charge or makes the anion less basic



[5]

[1] **[4]** 

| (c) H is<br>OH                                                                                                                          |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                         |                   |
| NO <sub>2</sub>                                                                                                                         | [1]               |
| reagents & conditions:<br>step 1 <b>dilute</b> HNO₃ (dilute, not just 'aq'. H₂SO₄ negates)                                              | [1]               |
| step i <b>unute</b> rintog (unute, not just aq : ri <sub>2</sub> 004 negates)                                                           | [']               |
| step 2 Sn/SnC1 <sub>2</sub> /Fe + HC1 or H <sub>2</sub> + Ni/Pd (NOT H <sub>2</sub> + Pt. NOT LiA1H <sub>4</sub> or NaBH <sub>4</sub> ) | [1]               |
| step 3 CH <sub>3</sub> COC <i>l or</i> (CH <sub>3</sub> CO) <sub>2</sub> O ('aq.' negates)                                              | [1]<br><b>[4]</b> |
|                                                                                                                                         |                   |
|                                                                                                                                         | [Total: 13]       |

|   | Page 8      |                                                              | Mark Scheme: Teachers' version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Syllabus                  | Paper                |
|---|-------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|
|   |             |                                                              | GCE A LEVEL – May/June 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9701                      | 42                   |
| 6 |             |                                                              | polar/ionic <i>or</i> can hydrogen-bond <i>or</i> are hydrophilic.<br>ntain the –OH group', on its own)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | [1]<br>[1]           |
|   | א<br>ד<br>( | Seco<br>Tertia<br>(not '                                     | ary structure is the <u>sequence/order</u> of <u>amino acids</u><br>ndary structure is the H-bonding between C=O & N-H<br>ary structure gives the (overall) 3D structure/shape/fol<br>coiling' on its own)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ding/globularity          |                      |
|   |             |                                                              | ention of at least one method of forming the 3° stru<br>een R-groups/side chains; –S-S- bridges; van der V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                      |
|   | с, с        | or it p                                                      | 3° structure provides a complementary shape to that corovides the right/specifically shaped cavity for the <u>subst</u> ovides nearby groups to aid the reactions of the <u>subst</u> ovides nearby groups to aid the reactions of the <u>subst</u> ovides nearby groups to aid the reactions of the <u>subst</u> ovides nearby groups to aid the reactions of the <u>subst</u> ovides nearby groups to aid the reactions of the <u>subst</u> ovides nearby groups to aid the reactions of the <u>subst</u> ovides nearby groups to aid the reactions of the <u>subst</u> ovides nearby groups to aid the reactions of the <u>subst</u> ovides nearby groups to a subst over the | <u>ostrate</u> . (NOT jus | st 'a cleft')<br>[1] |
|   |             | (a) II<br>(b) E<br>(c) C<br>(d) A<br>(e) A<br>Suita<br>(i) 3 | conditions out of the following:<br>ncreased temperature<br>Decreased temperature<br>Change in pH<br>Addition of heavy metals ( <i>or</i> specified, e.g. Hg/Ag)<br>Addition of inhibitors (competitive or non-competitive)<br>ble reasons:<br>BD structure changes shape/is deformed/is broken <i>or</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R-R interactions          | s (or a specific     |
|   |             | (ii) ir                                                      | example, e.g. H-bonding) are broken<br>nhibitor occupies active site.<br><i>wither</i> fewer substrate molecules with E > E <sub>a</sub> <i>or</i> fewer s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | successful collisi        | ons [2]<br>[6]       |



left hand peak labelled as pepsin right hand peak labelled as trypsin (Correct enzymes, but wrong way round, scores [1] only)

(ii) Peak between pH 6 and pH 8, and correct name (amylase)

[1] **[3]** 

[1] [1]

[Total: 10]

| Page 9 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2011    | 9701     | 42    |

## 7 (a)

| Number | Process                        | Correct sequence<br>(numbers) |
|--------|--------------------------------|-------------------------------|
| Α      | Place samples on agarose gel   | 4                             |
| В      | Use polymerase chain reaction  | 3                             |
| С      | Label with radioactive isotope | 6                             |
| D      | Extract DNA                    | 1                             |
| E      | Use restriction enzyme         | 2                             |
| F      | Carry out electrophoresis      | 5                             |

| mark as follows: | if <b>A</b> is <b>just</b> before <b>F</b> (i.e. <b>A</b> = 4, <b>F</b> = 5 or <b>A</b> = 5, <b>F</b> = 6) | [1] mark |
|------------------|------------------------------------------------------------------------------------------------------------|----------|
|                  | if <b>D</b> = 1 and <b>E</b> = 2                                                                           | [1] mark |
|                  | if <b>C</b> = 6                                                                                            | [1] mark |
|                  |                                                                                                            | [3]      |

(b) (i) P *or* phosphorus (NOT phosphate)

(ii) Phosphate groups are present in DNA *or* it makes the DNA fragments/bands etc. visible *or* locates their position *or* identifies them on a photographic plate etc. [1] (NOT because it's radioactive *or* makes the bands coloured)

[2]

[1]

- (c) (i) Yes, all 4 children share one/some band (*or* match/gene/fragment/part/DNA/ amino acid) with the mother's (DNA) (NOT the general statement "matches the mother's DNA")
  - (ii) Child 2, since he/she shares none of the bands of father's DNA/fingerprint or their fingerprint/DNA does not match the father's DNA (the general "match" is OK here) [1]
    [2]
- (d) (i)Compare DNA fingerprint for each fragment (can be read into use of the word<br/>'same' below)[1]Match the DNA patterns to determine which came from which skin[1]
  - (ii) A named example of biological origin (N.B. a material, not a whole organism) [1]
    e.g. leather (= bull skin), pollen, fish scales, leaves, seeds, feathers, hair, blood, textiles (or a named one like wool or silk or cotton or linen/flax), wood.

(N.B. NOT human or goat skin, also not metal, pottery or stone. If more than one material is given, mark the first one)

[3]

[Total: 10]

|   | Page 10                                                                                                                                           |                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                | Mark Scheme: Teachers' version                                                                                                                                                                                                                                       | Syllabus      | Paper                                |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------|--|--|
|   |                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                  | GCE A LEVEL – May/June 2011                                                                                                                                                                                                                                          | 9701          | 42                                   |  |  |
| 8 | (a) Range should be from 10 <sup>-6</sup> -10 <sup>-7</sup> (the left hand arrow)<br>to 10 <sup>-8</sup> -10 <sup>-9</sup> (the right hand arrow) |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |               | [1]<br>[1]<br><b>[2]</b>             |  |  |
|   | (b)                                                                                                                                               | with<br>allo                                                                                                                                                                             | Forms of the <b>same element</b> ( <i>or</i> of <b>carbon</b> , since carbon is the context of the question)<br>with different structures/arrangements of atoms<br>allow 'different molecular structure', but not structural formula. Any mention of 'compo<br>negates the mark. |                                                                                                                                                                                                                                                                      |               |                                      |  |  |
|   | (c)                                                                                                                                               | Nanoparticles are smaller than (animal) cells <i>or</i> they can pass through the cell membra<br><i>or</i> pass into/between cells<br>Drugs can be bound to/enclosed by the nanoparticle |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |               | membrane<br>[1]<br>[1]<br><b>[2]</b> |  |  |
|   | (d)                                                                                                                                               | (i)                                                                                                                                                                                      | Red                                                                                                                                                                                                                                                                              | uction/redox                                                                                                                                                                                                                                                         |               | [1]                                  |  |  |
|   |                                                                                                                                                   | (ii)                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                  | f chalcopyrite is 63.5 + 56 + 64 = 183.5<br>s of copper present is 63.5                                                                                                                                                                                              |               |                                      |  |  |
|   |                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                  | ce percentage of copper present = $\frac{63.5 \times 100}{183.5}$ = 34.6%<br>(Cu) = 64 is used, ans = <b>34.8</b> %. allow <b>34–35</b> %)                                                                                                                           | 6             | [1]                                  |  |  |
|   |                                                                                                                                                   |                                                                                                                                                                                          | If th                                                                                                                                                                                                                                                                            | e ore contains 2% of chalcopyrite by mass, calculate                                                                                                                                                                                                                 | how much copp | er is produced                       |  |  |
|   |                                                                                                                                                   |                                                                                                                                                                                          | 1 toi<br>1 toi<br>(acc<br>ansv                                                                                                                                                                                                                                                   | nne = 1000 kg<br>nne of chalcopyrite would produce 346 kg of copper<br>nne of 2 % ore would produce 346 × 0.02 or <b>6.9</b> kg of c<br>ept <b>7.0</b> or 7 kg)<br>wer may be given as 7000 g or 7 × 10 <sup>-3</sup> tonnes. If no<br>connes, and mark accordingly) |               |                                      |  |  |
|   |                                                                                                                                                   | (iv)                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                | lisplacement with a metal (the following specified met<br>be used: Fe, Zn, Sn, Pb, A <i>l</i> , Mg. (NOT Ca, Li, Na. I                                                                                                                                               | -             |                                      |  |  |

(iv) By displacement with a metal (the following specified metals higher than Cu in the ECS may be used: Fe, Zn, Sn, Pb, A*l*, Mg. (NOT Ca, Li, Na. K etc.) or with a suitable non-metallic reducing agent, e.g. SO<sub>2</sub> or Sn<sup>2+</sup>, but not something that wouldn't react, like H<sub>2</sub> or By electrolysis (with carefully controlled voltage) [1]

[4]

[Total: 10]