MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2			Teachers' version	Syllabus	Paper
			GCE A LE	/EL – Oc	ctober/November 2011	9701	41
1 (a	1) (i) (ii)	red/o		lour of br	n mixture of $H_2 + Cl_2$ but N romine decolourises/disap		[1]
			ainer gets warm/		Juceu		[2]
	(iii)	H-H	= 436		C <i>l</i> -C <i>l</i> = 244	H-C l = 431	
		ΔH	= 436 + 244 – 2	(431)	= −182 kJ mol [−]	I	[2]
		H-H	= 436		Br-Br = 193	H-Br = 366	
		ΔH	= 436 + 193 – 2	(366)	= −103 kJ mol ⁻	I	[2]
	(iv)	H-Br	bond is weaker	than the	H-C <i>l</i> bond – allow conver	se.	[1] [8]
(b	o) (i)	light					[1]
	(ii)			& H-I	= 410 + 151 = 561 = 240 + 299 = 539 = 551 = 520 = +22 km	- 1	[0]
				ΔH	= 551 – 539 = +22 kJ r	nol	[2]
	(iii)		overall reaction ed <i>or</i> high E _{act}	i is endo	othermic <i>or</i> no strong bo	onds/only weak bo	onds are [1] [4]
(c	;) (i)		olytic fission is t electron species		king of a bond to form (tw	o) radicals/neutral	species/ [1]

- [1] (ii) •CH₂Cl [1] **[3]** the C-Br bond is the weakest or needs least energy to break/breaks most easily
- (d) CI ċι

- 4 structures: [2] 2 or 3 structures: [1]
 - [1] **[3]**

[Total: 18]

Correct chiral atom identified

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE A LEVEL – October/November 2011	9701	41	
2	Orde		er w.r.t. [CH₃CHO] = 1 er w.r.t. [CH₃OH] = 1 er w.r.t. [H⁺] = 1		[1] [1] [1]	
	(ii)	rate	= k[CH₃CHO][CH₃OH][H ⁺]		[1]	
	(iii)	units	$s = mol^{-2} dm^6 s^{-1}$		[1]	
	(iv)	rate	will be $2 \times 4 = 8$ times as fast as reaction 1 (relative ratio	ate = 8)	[1] [6]	

(b)

	[CH ₃ CHO] /mol dm ⁻³	[CH ₃ OH] /mol dm ⁻³	[H ⁺] /mol dm ⁻³	[acetal A] /mol dm ⁻³	[H ₂ O] /mol dm ⁻³
at start	0.20	0.10	0.05	0.00	0.00
at equilibrium	(0.20 – x)	(0.10 – 2x)	0.05	x	x
at equilibrium	0.175	0.05	0.05	0.025	0.025

(iv)	$K_c = 0.025^2/(0.175 \times 0.05^2) = 1.4(3) \text{ (mol}^{-1} \text{ dm}^3)$	[1] [max 9]
(iii)	$K_c = \{[acetal A][H_2O]\}/\{[CH_3CHO][CH_3OH]^2\}$ units = mol ⁻¹ dm ³	[1] [1]
(ii)	4 values in third row	4 x [1]
(i)	3 values in second row	3 x [1]

[Total: 15]

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2011	9701	41

3 (a) for example.... also allow d_{z2}

shape (4 lobes) [1] correct label e.g. d_{xy} [1] [2]

(b) (i)

Marks are for 5 degenerate orbitals [1] and 3:2 split [1]

(ii) colour due to the absorption of light NOT emitted light[1] $E = hf or photon's energy = E in above diagram[1]electron promoted from lower to higher orbital[1]size of <math>\Delta E$ depends on the ligand[1]as ΔE changes, so does f in E = hf[1][7]

(c) (i)
$$O.N.(carbon) = +3$$
 (4 × (-2) + 2x = -2, thus 2x = +6) [1]

(iii)

[2]

(iv) $\underline{2} K_3 Fe(C_2O_4)_3 \rightarrow \underline{3} K_2C_2O_4 + \underline{2} FeC_2O_4 + \underline{2} CO_2$ $Or K_3 Fe(C_2O_4)_3 \rightarrow \underline{3/2} K_2C_2O_4 + FeC_2O_4 + CO_2$ [2]

[max 5]

	Pag	e 5					Syllabus	Paper
		GCE A LEVEL – October/November 2011						41
4	(a) ((i)	$C_2H_5NH_2 + HA \rightarrow C_2H_5NH_3^+ + A^-$ (HA can be H_2O , HC <i>l</i> etc.) Allow \rightleftharpoons instead of arrow					
	(i	ii)						
			n	nost basic		least basic		
			e	thylamine	ammonia	phenylamine		
		-						[1]
	(ii	ii)	ethylamine > NH ₃ due to electron-donating ethyl/alkyl group phenylamine < NH ₃ due to delocalisation of lone pair over ring					[1] [1] [4]
	(b) ((i)	C ₆ H₅	$_{5}\text{OH} + \text{OH}^{-} \rightarrow$	$C_6H_5O^- + H_2O$ (or	with Na⁺/H₂O/A⁻)		[1]
	(i	ii)	pKa of nitrophenol is smaller/K _a is larger because it's a stronger acid/dissociates more than phenol stronger because the anionic charge is spread out moreover the NO ₂ group <i>or</i> NO ₂ is electron-withdrawing					[1]
	(ii	ii)	pKa	= 1.0				[1]
	(ir	v)	Nitro	group increas	es acidity / electro	n-withdrawing groups	increase acidit	([1] [5]

(c) (i) **B** is phenyldiazonium cation, $C_6H_5-N^+\equiv N$

(i	i	۱	
l	l	•)	F

reaction	reagent(s)	conditions	
Step 1	NaNO ₂ + HC <i>1</i> or HNO ₂ [1]	T < 10°C [1]	
Step 2	H₂O / aq	heat/boil/T > 10° (both) [1]	
Step 3	HNO₃ NB HNO₃(aq) OK for both	dilute (both) [1]	
		٢٨	

[4] **[5]**

[1]

[Total: 14]

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2011	9701	41
			•

- 5 (a) (i) C=C double bonds / alkenes
 - (ii) -OH groups / accept alcohols or acids
 - (iii) CH_3CO- or $CH_3CH(OH)-$ groups
 - (iv) carbonyl, >C=O, groups / accept aldehydes and ketones 4 × [1]

(c) isomers of C

trans

correct structure (excl. stereochemistry)	[1]
cis and trans drawn correctly	[1]
type of isomerism is cis-trans or geometrical isomerism	[1]
	[3]

[Total: 9]

	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A LEVEL – October/November 2011	9701	41
6	(a) (i)	2H ₂ 1	$NCH_2CO_2H \rightarrow H_2NCH_2CONHCH_2CO_2H + H_2O$		[1]
	(ii)	Skel	etal formula required		[1] [2]
	(b) (i)	α he β ple	lix eated sheet		[1] [1]
	(ii)	For Nee with	dents should choose one of the structures belowα helix:For β pleated sheed to show a helixNeed to show twoC=O H-Nstrands with C=Oveen turnsthem	parallel 'zig-zag'	
		Whie	chever is chosen, overall structure [1] position of H bo	nds [1]	

[4]

(c)

ς,			
	amino acid residue 1	amino acid residue 2	type of bonding
	-HNCH(CH ₂ CH ₂ CH ₂ CH ₂ NH ₂)CO-	$H(CH_2CH_2CH_2CH_2NH_2)CO - HNCH(CH_2CH_2CO_2H)CO - HNCH(CH_2CO_2H)CO - HNCH(CH_2CO_2H)CO - HNCH(CH_2CO_2H)CO - HNCH(CH_2CH_2CO_2H)CO - HNCH(CH_2CH_2CH_2CO_2H)CO - HNCH(CH_2CH_2CH_2CO_2H)CO - HNCH(CH_2CH_2CH_2CH_2CH_2CO_$	
	-HNCH(CH ₃)CO-	–HNCH(CH ₃)CO–	van der Waals'
	–HNCH(CH₂SH)CO–	-HNCH(CH ₂ SH)CO-	Disulfide bonds
	-HNCH(CH ₂ OH)CO-	-HNCH(CH ₂ CO ₂ H)CO-	Hydrogen bonds

[4]

[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	41

7 (a) Sketch and label the apparatus used to carry out electrophoresis e.g

e filter paper soaked in buffer solution

Marks: power supply / electrolyte + filter paper / buffer / acid mixture central 4 × [1]
[4]

(b)	(i)	pH of the buffer Charge on the amino acid species	[1] [1]
	(ii)	Size of the amino acid species / M _r Voltage applied Magnitude of the charge (on the amino acid species) Temperature	[1] [1] [1] (max 3) [max 3]
(c)	(i)	They have insufficient electron density / only one electron	[1]

(ii) Sulfur [1] because it has the greatest atomic number / number of electrons [1] [3]

[Total: 10]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9701	41

8 (a)

traditional material	modern polymer used
Paper/cardboard/wood/leaves hessian/hemp/jute steel/aluminium	PVC in packaging
Cotton/wool/linen	Terylene in fabrics
Glass/china/porcelain/earthenware metal/leather	Polycarbonate bottle

 $3 \rightarrow 2$ marks, $2 \rightarrow 1$ mark [2]

(b)	Rea	asons: Plastics/polymers pollute the environment for a long time do not decor biodegrade quickly They are mainly produced from oil Produce toxic gases on burning	mpose/ [1] [1] [1] max two
		ategy 1: Recycle polymer waste / use renewable resources ategy 2: Develop biodegradable polymers	[1] [1] [max 3]
(c)	PVC Combustion would produce HC1/ dioxins as a pollutant or nylon/acrylic Combustion would produce HCN		[1] [1] [1] [2]
(d)	(i)	Polythene (or other addition polymer)	[1]
	(ii)	Addition polymerisation	[1]
		The polymer chains don't have strong bonds between them – easy to melt Could be answered with a suitable diagram	[1] [3]
			[Total: 10]