MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	21

1 (a)

(a)								7	
	Na ₂ O	MgO	Al_2O_3	SiO ₂	P_4O_{10}	SO ₂	C <i>l</i> ₂ O ₇		
	alkaline	basic	amphoteric	acidic	acidic	acidic	acidic		
	Na₂O is alka	aline – allow	basic					(1)	
	alkalinebasicamphotericacidicacidicaNa2O is alkalineallow basicMgO is basic – allow alkaline Al_2O_3 is amphotericSiO2, P4O10, and SO2 are all acidicany two from: sodium, phosphorus, sulfur and chlorine two names required(i)any three from: floats vigorous/violent reaction occurs melts/forms a sphere moves disappears – allow dissolves effervescence/gas produced(ii)Na + H2O \rightarrow NaOH + 1/2H2 or 2Na + 2H2O \rightarrow 2NaOH + H2							(1)	
	A <i>l</i> ₂O₃ is amp	ohoteric						(1)	
	SiO ₂ , P ₄ O ₁₀ ,	and SO_2 ar	e all acidic					(1)	[4]
	sodium, pho	sphorus, su	lfur and chlori	ine				(1)	[1]
(c)	floats vigorous melts/fo moves disappe	s/violent rea orms a sphe ears – allow	re dissolves				(an	y 3)	
(or							(1)	[4]
(d)			f	rom car exh	austs or				
	volcanic	c eruptions/b						(1)	
(or	low H ₂ SO ₃	formula requ	uired				(1)	
(i	or			o crops, pla	nts, marine	life			
	or SO₃ is t	oxic	Generation					(1)	[3]
(e)	t is a reduci	ng agent/an	tioxidant						
	or t kills bacter	ria						(1)	[1]

	Page 3		Syllabus	Paper	,
		GCE AS/A LEVEL – May/June 2012	9701	21	
	(f) (i)	$ \bigcirc \circ $			
				(1)	
	(ii)	180°		(1)	[2]
				[Total:	: 15]
2	cor	$H_4)_2SO_4 + 2NaOH \rightarrow 2NH_3 + Na_2SO_4 + 2H_2O$ rect products rectly balanced equation		(1) (1)	[2]
	(b) (i)	NaOH + HC $l \rightarrow NaCl + H_2O$		(1)	
	(ii)	$n(HCl) = \frac{31.2}{1000} \times 1.00 = 0.0312 = 0.03$		(1)	
	(iii)	$n(NaOH) = \frac{50.0}{1000} \times 2.00 = 0.10$		(1)	
	(iv)	n(NaOH) used up = 0.10 - 0.0312 = 0.0688 = 0.07		(1)	
	(v)	$n[(NH_4)_2SO_4] = \frac{0.0688}{2} = 0.0344 = 0.03$		(1)	
	(vi)	mass of $(NH_4)_2SO_4 = 0.0344 \times 132 = 4.5408 = 4.54$		(1)	
	(vii)	percentage purity = $\frac{4.5408 \times 100}{5.00}$ = 90.816 = 90.8		(1)	[7]

	Page 4				ark Schen					Syllabus	Pape	r
				GC	E AS/A LI	EVEL -	– May/J	une 2012		9701	21	
3	(a)			$_{2}(g) \rightarrow CO$ alpy change		nange/	heat cha	ange when			(1)	
				e of a compo		ion gor					(1)	
		is formed from its elements in their standard states								(1)	[3]	
	(b)	(i)	ΔH^{e}_{f}	/kJ mol ⁻¹	CO ₂ (g) -394	+ 3H	H₂(g) ← 0	[≥] CH₃OH(g) –201	+	H ₂ O(g) -242		
				_{reaction} = –20 kJ mol ^{–1})1 + (–242	.) – (–3	394)				(1)	
				ect sign							(1) (1)	
		(ii)	remo	oval of CO ₂	from the a	tmosp	here				(1)	
			CO ₂	is a greenh	ouse gas/	causes	s global v	warming			(1)	[5]
	(c)			art, in each c to gain the e				correctly sta	ated			
		hig	her to	emperature)							
				educed/equ				rse reaction i	is and	othermic	(1) (1)	
		Dec	ause			Jourierin				othermic	(1)	
		-	-	oressure ncreased or	oquilibriu	m aoos	e to RHS	2			(1)	
								, es/molecules	s on Ll	HS	(1)	
				atalyst							(4)	
		•		es not chang and backwa		eedec	່ງ up by s	ame amoun	t		(1) (1)	[6]
											[Total	: 14]

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE AS/A LEVEL – May/June 2012	9701	21	
4	(a) (i) $C_2H_5OH \rightarrow C_2H_4 + H_2O$			(1)		
	(ii) elimin		ination or dehydration		(1)	
	sulfurio		sphoric acid or concentrated sulfuric acid uric acid must be 'concentrated' v aluminium oxide		(1)	[3]

(b)

	with HBr	with MnO₄ [−]
colour at start	colourless	purple or pink
colour after reaction	colourless	colourless or decolourised
structural formula of product	CH₃CH₂Br	HOCH ₂ CH ₂ OH

with hydrogen bromide		
from colourless to colourless both colours required		
do not allow 'clear' instead of colourless	(1)	
CH ₃ CH ₂ Br	(1)	
with potassium manganate(VII)	()	
from purple/pink to colourless/decolourised both colours required	(1)	
HOCH ₂ CH ₂ OH	(1)	[4]
	(.)	1.1

(c) (i)
$$C_6H_{10}$$
 (1)

(ii)

accept answers which have $-CH_2$ - in the ring (1)

(iii) electrophilic (1) addition (1)

or

(iv)

CO₂H CO₂H

$HO_2C(CH_2)_4CO_2H$ or	
$HO_2CCH_2CH_2CH_2CO_2H $ (1)	
accept answers which have –CH ₂ – in the ring	[5]

[Total: 12]

	Page 6	6	Mark Scheme: Teachers' version	Syllabus	Paper	er	
			GCE AS/A LEVEL – May/June 2012	9701	21		
5	(a) car	boxylic	acid or –CO ₂ H or –COOH		(1)	[1]	
	(b) (i)	alcoho	bl		(1)		
	(ii)	<i>n</i> (H ₂)	$= \frac{160}{24000} = 6.67 \times 10^{-3} \text{ mol}$		(1)		
		<i>п</i> (Н at	toms) = $2 \times 6.67 \times 10^{-3}$ mol = 1.33×10^{-2} mol		(1)		
	(iii)		$= \frac{0.600}{90} = 6.67 \times 10^{-3} \text{ mol}$				
		n(X):	$n(\text{H atoms}) = 6.67 \times 10^{-3} : 1.33 \times 10^{-2}$				
		since	∠ each –OH group produces one H atom are two –OH groups		(1)	[4]	
	(c) (i)	—-c<	r = c = 0		(1)		
	(11)						
	(ii)		H ₂ CH(OH)CHO as the minimum the <i>gem</i> diols (HO) ₂ CHCH ₂ CHO or CH ₃ C(OH) ₂ CHO		(1)		
	(iii)	HOCH	$H_2CH(OH)CO_2H$ or $HOCH_2CH(OH)CO_2^-$		(1)	[3]	
	(d) (i)	HOCH	H ₂ CH(OH)CH ₂ OH		(1)		
	(ii)	(ii) HO ₂ CCOCO ₂ H				[2]	
					[Total:	10]	
					-	-	