MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	2		k Scheme: Teachers' version	Syllabus	Paper	•	
			GCE	AS/A LEVEL – May/June 20	012	9701	22	
1	(a) (i)	silico	on/Si or phos	phorus/P			(1)	
	(ii)	sodi	um or sulfur	name required			(1)	
	(iii)	chlo	e solid formed rine gas deco ninium glows d		any two (2)			
	(iv)	2A <i>l</i> (equa	s) + $3Cl_2(g)$ -	→ $Al_2Cl_6(s)$ or → $2AlCl_3(s)$			(1) (1)	
	(v)	vale activ	nce shell of e	trons is full/has a complete o lectrons is full/has a complete is too high or is too high			(1)	[7]
	(b) (i)							
		ele	ment	Does the chloride dissolve or react?		kimate pH of the Ilting solution	9	
		1	Na	dissolve		7		
			A1	react		1 to 4		
			Si	react		1 to 4		
		one	mark for each	n correct answer			(6 × 1)	
	(ii)	hydr	olysis				(1)	[7]
	(c) (i)			n there is only one lone pair n there are two lone pairs			both (1)	
	(ii)	angl	e (a) or sulfu	r – no mark for this				
		hoc	nune two long	pairs ropal more than one la	no noir or			

because two lone pairs repel more than one lone pair **or** lone pair-lone pair repulsions are stronger than lone pair-bond pair repulsions

[Total: 16]

(1) [2]

Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	•			
		GCE AS/A LEVEL – May/June 2012	9701	22				
2 (a)	$CH_3OH(I) + {}^{3}/{}_{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$ the enthalpy change/heat change/heat evolved when							
	one mole	of CH ₃ OH		(1)				
		etely burned or I in an excess of air/oxygen		(1)	[3]			
(b)	$\Delta H^{e}_{reactior} = -129 \text{ k}$			(1) (1) (1)	[3]			
(c)				(1) (1)				
	tempera increase because			(1) (1)				
	catalyst increase by provid	s rate ling an alternative route of lower E_a		(1) (1)	[6]			
				[Total	: 12]			

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	22
(d) (i)			
	0—н		

Н

]О—Н

=0

(1)
(1)

empirical formula is C₆H₈O₇

н—о⊳с

ò

н

0:

(ii)

[Total: 19]

[3]

(1)

[6]

Page 6		Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012							Syllabus	Paper		
				G	<u> </u>			June 2012		9701	22	
4	(a)						5 00 II					
		reager	nt	R₂Cł	ЮН	RCHO	RCO₂H	RCO₂R'	RCOR'			
		NaHCO	D_3				\checkmark					
		Na		v	/		\checkmark					
	C	Cr ₂ O ₇ ²⁻ /	′H⁺	~	/	\checkmark						
	give one mark for each correct tick										(5 × 1)	[5]
	(b) (i)) alcol not				ol or –O	Н				(1)	
	(ii)) n(H ₂) =	80 2400(- = 3	3.3 × 10 [∹]	³ mol				(1)	
		n(H atoms) = $2 \times 3.3 \times 10^{-3}$ mol = 6.6 × 10^{-3} mol							l		(1)	
	(iii)	(iii) $n(\mathbf{G}) = \frac{0.30}{90} = 3.3 \times 10^{-3} \text{ mol}$										
			l atom	ıs) =	3.3 × 10	⁻³ : 6.6 × ′	10 ⁻³					
		= 1 so e		-OH g	roup p	oroduces	one H ato	om			(1)	[4]
	(c) (i)	R,	<u> </u>			=0						
		R		or		or		and 'ke	tone'		(1)	
	(ii)	•				H as the I₃COCH	e minimum (OH)₂	I			(1)	[2]
	(d) (i)) His	HO ₂ 0	coc	O₂H a	is the mi	nimum				(1)	
	(ii)) Jisl	HOCI	H₂CH	(OH)C	H₂OH as	s the minir	num			(1)	[2]
											[Total:	13]