## MARK SCHEME for the May/June 2012 question paper

## for the guidance of teachers

## 9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



| Page 2    |                                              |                                                          | Syllabus         |                 |                 |                |                   |       |
|-----------|----------------------------------------------|----------------------------------------------------------|------------------|-----------------|-----------------|----------------|-------------------|-------|
|           | GCE AS/A LEVEL – May/June 2012 9             |                                                          |                  | 9701            | 23              |                |                   |       |
| 1 (a) (i) | electrons                                    | o C1<br>harge increas<br>are in the sa<br>traction incre | me shell/ha      | ave the same    | e shielding     |                | (1)<br>(1)<br>(1) |       |
| (ii)      | -                                            | s not form a<br>sts as single                            | •                | •               | r               |                | (1)               | [4]   |
| (b) (i)   |                                              |                                                          |                  |                 |                 |                |                   |       |
|           | rad                                          | ius of cation                                            | /nm              | rad             | ius of anion    | /nm            |                   |       |
|           | Na⁺                                          | Mg <sup>2+</sup>                                         | A1 <sup>3+</sup> | P <sup>3–</sup> | S <sup>2–</sup> | C <i>l</i> −   |                   |       |
|           | 0.095                                        | 0.065                                                    | 0.050            | 0.212           | 0.184           | 0.181          |                   |       |
|           |                                              |                                                          |                  |                 |                 |                | (1)               |       |
| (ii)      | cations co                                   | ntain fewer<br>ntain fewer<br>as a greater               | electrons th     |                 |                 | toms <b>or</b> | (1)<br>(1)        |       |
| (iii)     | anions co                                    | ntain more e<br>ntain more e<br>as a smaller             | lectrons that    |                 |                 | oms <b>or</b>  | (1)<br>(1)        | [5]   |
| (c) (i)   |                                              | $p_2 O \rightarrow 2 Na O O \rightarrow H_2 S O_3$       |                  |                 |                 |                | (1)<br>(1)        |       |
| (ii)      | for Na <sub>2</sub> O<br>for SO <sub>2</sub> | 10 to <sup>-</sup><br>1 to 4                             | 14               |                 |                 |                | (1)<br>(1)        |       |
| (iii)     |                                              | $H_2SO_3 \rightarrow Na$<br>$H_2SO_3 \rightarrow Na$     |                  |                 |                 |                | (1)               | [5]   |
|           |                                              |                                                          |                  |                 |                 |                | [Total:           | : 14] |

|   | Page 3      | 6                       | Mark Scheme: Teachers' version                                                                                                                                           | Syllabus       | Paper      |       |
|---|-------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-------|
|   |             |                         | GCE AS/A LEVEL – May/June 2012                                                                                                                                           | 9701           | 23         |       |
| 2 | (a) (i)     | Na <sub>2</sub> (       | $CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$                                                                                                                            |                | (1)        |       |
|   | (ii)        | n(H0                    | $Cl) = \frac{35.8}{1000} \times 0.100 = 3.58 \times 10^{-3}$                                                                                                             |                | (1)        |       |
|   | (iii)       | n(Na                    | $a_2 CO_3$ ) = $\frac{35.8}{2} \times 10^{-3} = 1.79 \times 10^{-3} \text{ mol in } 25.0 \text{ cm}^3$                                                                   |                | (1)        |       |
|   | (iv)        | <i>n</i> (Na            | $a_2 CO_3$ ) = 1.79 × 10 <sup>-3</sup> × 10 = 1.79 × 10 <sup>-2</sup> mol in 250 c                                                                                       | m <sup>3</sup> | (1)        |       |
|   | (v)         | <i>M</i> <sub>r</sub> o | s of Na <sub>2</sub> CO <sub>3</sub> = 1.79 × 10 <sup>-2</sup> × 106 = 1.90g<br>f Na <sub>2</sub> CO <sub>3</sub> = 106<br>s of Na <sub>2</sub> CO <sub>3</sub> = 1.90 g |                | (1)<br>(1) | [6]   |
|   | <i>n</i> (N | la₂CC                   | n 5.13 g of washing soda = $\frac{5.13 - 1.90}{18}$ = 1.79 × 10 <sup>-1</sup><br>$P_3$ ) in 5.13 g of washing soda = 1.79 × 10 <sup>-2</sup> mol                         | mol            | (1)        |       |
|   | n(H<br>or   | l₂O) :                  | $n(Na_2CO_3) = 10:1$                                                                                                                                                     |                | (1)        |       |
|   |             | 0 g N                   | $a_2CO_3$ are combined with 3.23.g $H_2O$                                                                                                                                |                |            |       |
|   | 106         | 6 g Na                  | $a_2 CO_3$ are combined with $\frac{3.23 \times 106}{1.90}$ = 180.2 g H <sub>2</sub>                                                                                     |                | (1)        |       |
|   | this        | s is 10                 | ) mol of H <sub>2</sub> O                                                                                                                                                |                | (1)        |       |
|   |             |                         | $D^{-2}$ mol Na <sub>2</sub> CO <sub>3</sub> .xH <sub>2</sub> O ≡ 5.13 g of washing soda                                                                                 |                |            |       |
|   | 1 m         | nol Na                  | $a_2 CO_3 x H_2 O \equiv \frac{5.13}{1.79 \times 10^{-2}} = 286.6 g$                                                                                                     |                | (1)        |       |
|   |             |                         | = 106 and $H_2O$ = 18 hence x = 10                                                                                                                                       |                | (1)        | [2]   |
|   |             |                         |                                                                                                                                                                          |                | [Tota      | l: 8] |

| P    | age 4              | Mark Sc                                                                                                                                                                                              | heme: Teachers' version Syllabus                                                                         | Paper             | ,   |
|------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------|-----|
|      | 0                  |                                                                                                                                                                                                      | A LEVEL – May/June 2012 9701                                                                             | 23                |     |
| 3 (a | the<br>one<br>is c | $_{3}$ OCH <sub>3</sub> (I) + 3O <sub>2</sub> (g) $\rightarrow$ 2<br>enthalpy change/heat (<br>e mole of CH <sub>3</sub> OCH <sub>3</sub> /a completely burned <b>or</b><br>med in an excess of air/ | change/heat evolved when<br>ompound                                                                      | (1)<br>(1)<br>(1) | [3] |
| (b   |                    | 2CH <sub>3</sub> OH(I)<br><sup>e</sup> <sub>f</sub> /kJ mol <sup>-1</sup> 2(–239)<br><sup>e</sup> <sub>reaction</sub> = –184 + (–<br>= +8 kJ mo<br>rect sign                                         | $\rightarrow$ CH <sub>3</sub> OCH <sub>3</sub> (g) + H <sub>2</sub> O(I)<br>-184 -286<br>-286) - 2(-239) | (1)<br>(1)<br>(1) | [3] |
| (c   | ) (i)              | н — с — о — с — н<br>Н — с — о — с — н<br>Н Н Н                                                                                                                                                      | н н<br>   <br>н—с—с—о—н<br>   <br>н н<br>ethanol                                                         |                   |     |
|      |                    | both correct                                                                                                                                                                                         |                                                                                                          | (1)               |     |
|      | (ii)               | structural isomerism <b>o</b>                                                                                                                                                                        | <b>r</b> functional group isomerism                                                                      | (1)               | [2] |
| (d   | l) (i)             | hydrogen bonds                                                                                                                                                                                       |                                                                                                          | (1)               |     |
|      | (ii)               | lone pair on O atom o                                                                                                                                                                                | f C <sub>2</sub> H <sub>5</sub> OH                                                                       | (1)               |     |
|      |                    | correct dipole $O^{\delta-}$ — $H^{\delta}$                                                                                                                                                          | $^{\scriptscriptstyle +}$ on bond in one molecule of ethanol                                             | (1)               |     |
|      |                    | i.e.<br><sub>С2</sub> н <sub>5</sub>                                                                                                                                                                 | between lone pair of an O atom and a hydrogen ato                                                        | om,               |     |
|      |                    | <br>• 0 • ····· H—0—C₂H<br> <br>H                                                                                                                                                                    | 5                                                                                                        | (1)               | [4] |



(1) (1) [3]

(ii) compound B compound C

| Page 6 | Mark Scheme: Teachers' version | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2012 | 9701     | 23    |

(e)

| CH3   | H     | CH    | ₃ CH | 3 |
|-------|-------|-------|------|---|
|       |       |       |      |   |
| — C — | - C — | - C – | - C— | _ |
|       |       |       |      |   |
| Н     | CH3   | H     | Н    |   |

| allow any orientation of CH <sub>3</sub> – groups | (1) | [1] |
|---------------------------------------------------|-----|-----|
|---------------------------------------------------|-----|-----|

- (f) (i)  $CH_2=CH\_CH=CH_2$ allow  $CH_3CHOHCH=CH_2$  and  $CH_3C=CCH_3$  (1)
  - (ii) CH<sub>2</sub>BrCHBrCHBrCH<sub>2</sub>Br allow CH<sub>3</sub>CBr<sub>2</sub>CBr<sub>2</sub>CH<sub>3</sub> from CH<sub>3</sub>CHOHCH=CH<sub>2</sub> allow CH<sub>3</sub>CHOHCHBrCH<sub>2</sub>Br from CH<sub>3</sub>C≡CCH<sub>3</sub>
  - (iii) electrophilic addition both words required (1) [3]

[Total: 14]

(1)

|   | Page 7                                   | Mark Scheme: Teachers' version                                                                                                                                                                                     | Syllabus | Paper             |     |
|---|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----|
|   |                                          | GCE AS/A LEVEL – May/June 2012                                                                                                                                                                                     | 9701     | 23                |     |
| 5 | ( <b>a) (i)</b> CO <sub>2</sub>          | /carbon dioxide                                                                                                                                                                                                    |          | (1)               |     |
|   | (ii) carb                                | oxylic acid <b>or</b> –CO <sub>2</sub> H <b>or</b> –COOH                                                                                                                                                           |          | (1)               | [2] |
|   | <b>(b) (i)</b> deh                       | dration <b>or</b> elimination                                                                                                                                                                                      |          | (1)               |     |
|   | ΎΗ co                                    | ontains >C=C< bond<br>ontains $-CO_2H$ group<br>$CH_2=CHCO_2H$                                                                                                                                                     |          | (1)<br>(1)<br>(1) | [4] |
|   |                                          | $\frac{0.600}{90} = 6.67 \times 10^{-3} \text{ mol}$                                                                                                                                                               |          | (1)               |     |
|   | hence or<br><i>n</i> (H <sub>2</sub> ) = | This one –OH group and one –CO <sub>2</sub> H group<br>The mole of <b>F</b> produces one mole of H <sub>2</sub> with Na<br>$6.67 \times 10^{-3}$ mol<br>$p_{2} = 6.67 \times 10^{-3} \times 24000$ cm <sup>3</sup> |          | (1)<br>(1)        |     |
|   |                                          | <sup>2</sup> at room temperature and pressure                                                                                                                                                                      |          | (1)               | [4] |

(d) (i)

| HOCH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> H | CH <sub>3</sub> CH(OH)CO <sub>2</sub> H |
|-----------------------------------------------------|-----------------------------------------|
| J                                                   | к                                       |

one isomer correct

(ii)

| HO <sub>2</sub> CCH <sub>2</sub> CO <sub>2</sub> H | CH <sub>3</sub> COCO <sub>2</sub> H |
|----------------------------------------------------|-------------------------------------|
| product from J                                     | product from K                      |

one oxidation product correct

(1) [2]

(1)

[Total: 12]