MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

(a)			Mark Scheme Syllabus		Paper	
(2)		GCE AS/A LEVEL – October/November 2012 9701		22		
(a)	ZnC not	CO ₃ Zn(OH) ₂ ZnO t Zn or other compounds of Zn				[2]
(b)	(i)		nsure all of the water of crystallisation had been driven one at constant mass	off or	(1)	
	(ii)	mas	s of ZnSO ₄ = 76.34 – 74.25 = 2.09 g		(1)	
		M _r Z	nSO ₄ = 65.4 + 32.1 + (4 × 16.0) = 161.5			
	allow use of Zn = 65 and/or S = 32 to give values between 161 and 161.		61 and 161.5	(1)		
		$n(\text{ZnSO}_4) = \frac{2.09}{161.5} = 0.01294 = 1.29 \times 10^{-2}$ ZnSO ₄ = 161 gives 1.30 × 10 ⁻² iii) mass of H ₂ O driven off = 77.97 – 76.34 = 1.63 g				
					(1)	
	(iii)				(1)	
		<i>n</i> (H ₂	$O) = \frac{1.63}{18} = 0.0905 = 9.1 \times 10^{-2}$		(1)	
	(iv)	1.29	\times 10^{-2} mol ZnSO_4 are combined with 9.1 \times 10^{-2} mol H_2	0		
		1 mc	ol ZnSO ₄ is combined with $\frac{9.1 \times 10^{-2}}{1.29 \times 10^{-2}}$			
		= 7.0	$054 \equiv 7 \text{ mol } H_2O$			
			ver must be expressed as a whole number / ecf on candidate's answers to (b)(ii) and (b)(iii)		(1)	[7]
(c)	(i)	<i>n</i> (Zn) = n (CH ₃ CO ₂) ₂ Zn.2H ₂ O		(1)	
		<i>n</i> (Zn	$) = \frac{0.015}{65.4} = 2.290 \times 10^{-4}$			
		= 2.2	29 × 10 ⁻⁴		(1)	
			s of crystals = 2.29 × 10 ^{−4} × 219.4 = 0.0502655 g)5 g = 50 mg		(1)	
	(ii)		entration of $(CH_3CO_2)_2Zn.2H_2O = \frac{2.29 \times 10^{-4}}{0.005} = 0.0458$			
		= 4.5	58 × 10 ⁻² mol dm ⁻³		(1)	
		allow	v correct answers if Zn = 65 is used			[4]
					[Tota	l: 13]

	Pa	ge 3	8	Mark GCE AS/A LEVEL – (Scheme	vombor		Syllabus 9701	Paper 22	,
2	(a)	(i)	ther	nal stability decreases do			2012	9701	(1)	
		(ii)	the I H—2 sma	Cl to I, atomic size increation onding pair is further from K bond becomes longer o ler orbital overlap occurs the H—X bond strength dec	n the nucleu r				(1) (1)	[3]
	(b)	K _c =	= <u>[</u> [H ₂	$\frac{ \mathbf{I} ^2}{ \times[\mathbf{I}_2] }$						(1)
		no	units	- must be clearly stated					(1)	[2]
	(c)	(i)		hange as no units or					(1)	
				e no. of molecules / moles	s each side	of equilit	orium		(1)	
		(ii)	K _c ir	ibrium moves to RHS creases with decreasing t ard reaction is exothermic		or			(1)	
			reve	rse reaction is endothermi	ic				(1)	[4]
	(d)	equ	al mo uil. mo uil. co	les	$H_{2}(g) \\ 0.02 \\ (0.02 - y) \\ (0.02 - y) \\ 1$	+	$I_{2}(g) = 0.02 \\ (0.02 - y) \\ (0.02 - y) \\ 1$	2HI(g) 0 2y <u>2y</u> 1	(1)	
		K _c =	= <mark> </mark> [H ₂	$\frac{\mathrm{dI}^2}{ \times[\mathrm{I}_2] } = \frac{(2y)^2}{(0.02 - y)^2} = 59$)				(1)	
		(0.0	<u>2y</u>)2 – y	= √59 = 77)						
		2y :	= (7.7	× 0.02) – 7.7y						
		9.7	y = 0.	154						
		give	es y =	$\frac{0.154}{9.7} = 0.0159 = 0.016$					(1)	
		at e	equili	brium						
		n(H	II) = 2	$\times 0.016 = 0.032$ and	~ /					

 $n(H_2) = n(I_2) = (0.02 - 0.016) = 0.004$ (1)

allow ecf where possible

[4]

[Total: 13]

	Page 4			Syllabus	Paper		
			GCE	AS/A LEVEL – October/November 2012	9701	22	
3	(a)	(i)	$N_2(g) + 3H_2(g)$ $N_2(g) + 3H_2(g)$				
			state symbols	required		(1)	
		(ii)	pressure	between 60 and 250 atm or between 60 × 10 ⁵ Pa and 250 × 10 ⁵ Pa		(1)	
			temperature	between 300 and 550 °C		(1)	
			catalyst	iron / iron oxide		(1)	
		(iii)		of HNO_3 / as a cleaning agent / refrigerant losives / to remove SO_2 from combustion pro			
	(b)	(i)	NH₄C <i>l</i> and Ca both formulae			(1)	
		(ii)	$2NH_4Cl + Ca(O)$ $NH_4^+ + OH^- \rightarrow$	$(OH)_2 \rightarrow CaCl_2 + 2NH_3 + 2H_2O \text{ or}$ $(NH_3 + H_2O)$			
			correct produc correctly balan			(1) (1)	
		(iii)	CaO	d / it is basis / it does not react with NUL on		(1)	
				d / it is basic / it does not react with NH_3 or O_{10} and H_2SO_4 are acidic / react with NH_3		(1)	[5]
	((c)	H-N: + H-N: + H	$H^{+} \longrightarrow \begin{bmatrix} H \\ H \\ H \\ H \end{bmatrix}^{+}$			

correct displayed eqn.,	
with positive charge clearly shown	(1)
lone pair on NH_3	(1)
co-ordinate / dative bond clearly shown	(1) [3]

[Total: 13]

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	22

4 (a) (i)

reaction	organic compound	reagent	structural formulae of organic products
A	(CH ₃) ₃ COH	Cr ₂ O ₇ ^{2–} /H ⁺ heat under reflux	no reaction
В	CH ₃ CH ₂ CHO	Fehling's reagent warm	CH₃CH₂CO₂H or CH₃CH₂CO2 [−]
С	HCO ₂ CH(CH ₃) ₂	NaOH(aq) warm	HCO₂Na or HCO₂ [−] (CH₃)₂CHOH
D	CH ₂ =CHCHO	NaBH ₄	CH ₂ =CHCH ₂ OH
Е	(CH₃)₃COH	NaBH ₄	no reaction
F	CH ₃ CH ₂ COCH ₃	MnO₄ [−] /H⁺ heat under reflux	no reaction

each correct answer gets (1)

(7 × 1)

(ii)

reaction	colour at the beginning of the reaction	colour at the end of the reaction
В	blue	brick red

each correct answer gets 1

(1 +1 + 1) [10]

(b) (i)

(ii) red or orange

(1)

(1) [2]

[Total: 12]

	Page 6			Mark Scheme	Syllabus	Paper	,
				GCE AS/A LEVEL – October/November 2012	9701	22	
5	carl		carb	oxylic acid or alcohol present or oxylic acid and alcohol present acid or carboxyl or hydroxyl		(1)	
		(ii)		oxylic acid not present or alcohol present		(1)	
		(iii)	alke	ne or >C=C< present		(1)	[3]

(b) (i)

each correct structure gets (1) (4×1)

(ii) pair 1	geometrical or <i>cis-trans</i> or <i>E</i> / <i>Z</i> isomerism	(1)

[Total: 9]