MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/33

Paper 3 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	33

Qu	estion	Sections		Indicative material	Mark	Total
1	(a)	PDO Recording	I	All columns correctly headed and correct units given for all columns except for rate/(1000/time) e.g. /s, (s), time in s, time in seconds.	1	
				Records all times to the nearest second. Allow for only 5 expts carried out.	1	
		MMO Decisions		Additional experiment (experiment 6) uses volume of FA 1 \ge 3 cm ³ of any other, and adds water to make 50 cm ³ . Other volumes are those specified.	1	
		PDO Display		Candidate gives all values of (1000/time) to 3 sig fig – ignore calculation or rounding errors (minimum of 4 expts carried out).	1	
		ACE	t	All values of (1000/time) correctly calculated to sig fig shown by candidate (minimum of 4 expts carried out).		
		Interpretation MMO Quality		Experiments 2 and 4: calculate 100(2t ₂ – t ₄)/t ₄ \leq 20% for $\ 1$ mark; \leq 2 marks.	1	
		Quanty		Experiments 3 and 5: calculate $100(3t_3 - t_5)/t_5 \le 30\%$ for 1 mark; ≤ 2 marks.	6	
				Experiments 4 and 5: calculate $100(2t_4 - t_5)/t_5 \le 30\%$ for 1 mark; ≤ 2 marks.		
			marks VI Experime	adidate has not completed the 5 th experiment, and VII are available. Also check ents 1 and 2: t_2 should equal to $t_1 \times 5/4$. Use and 20% boundaries.		
				e first three experiments are completed, award based on Experiments 1 and 2 (as above).		
			•	, 40, 35, marks X and XI not available. Use 40 there + 'rescue' pair as above.)		
			nearest s	miner is to round all reaction times to the second before awarding accuracy marks. s FA 1 /expt no as specified in Qn)		[11]

GCE	S/A LEVEL – October/November 2012 9701		3	33
)O yout	I Plots rate or (1000/time) on <i>y</i> -axis a volume of FA 1/FA 1 cm ³ on <i>x</i> - axis. Ax correctly labelled.	and es	1	
		0	1	
	carried out (minimum 5).		2	
	passes close to the majority of points a are balanced. The line does not have to p	nd points ass	1	[5]
E.	Depth (of solution) is greater,		1	
Inclusions	so time is shorter/less// <u>time</u> is faster//fewer (<i>time is conditional on depth</i>)	seconds	1	
	or solution/liquid depth unchanged so reactio unchanged for 1 mark.	n time		[2]
E erpretation	Give one mark for a concentration of $0.021/0.0214/0.02143$ mol dm ⁻³ for expt 5.		1	
)O splay	Working shown must include correct use of 7	0.	1	[2]
	DO yout	GCE AS/A LEVEL – October/November 2012 DO yout I Plots rate or (1000/time) on y-axis a volume of FA 1/FA 1 cm ³ on x- axis. Ax correctly labelled. II Uniform scales selected. Each scale starts at zero and f point plotted on each axis has used more of the available grid. III and Examiner to check all plotted points. IV Points must be correct to ½ small s and in correct small square. Award III and IV Award III only if one mistake made. (If only fo carried out (minimum 5). Award III only if one mistake made. (If only fo carried out then all 4 correct.) V Draws a "best-fit" straight line – one t passes close to the majority of points a are balanced. The line does not have to p through the origin. (Allow curve if approtition through the origin. (Allow curve if approtition or solution/liquid depth unchanged so reaction unchanged for 1 mark. E erpretation Give one mark for a concentration of 0.021/0.0214/0.02143 mol dm ⁻³ for expt 5. DO Working shown must include correct use of 7	GCE AS/A LEVEL – October/November 2012 9701 OO I Plots rate or (1000/time) on y-axis and volume of FA 1/FA 1 cm ³ on x- axis. Axes correctly labelled. II Uniform scales selected. Each scale starts at zero and highest point plotted on each axis has used more than half of the available grid. III and Examiner to check all plotted points. IV IV Points must be correct to ½ small square and in correct small square. Award III and IV for correct points for all experiments carried out (minimum 5). Award III only if one mistake made. (If only four expts carried out then all 4 correct.) V Draws a "best-fit" straight line – one that passes close to the majority of points and points are balanced. The line does not have to pass through the origin. (Allow curve if appropriate.) EE Depth (of solution) is greater, so time is shorter/less//time is faster//fewer seconds (<i>time is conditional on depth</i>) or solution/liquid depth unchanged so reaction time unchanged for 1 mark. Give one mark for a concentration of 0.021/0.0214/0.02143 moldm ⁻³ for expt 5. OO Working shown must include correct use of 70.	GCE AS/A LEVEL - October/November 2012 9701 3 00 yout I Plots rate or (1000/time) on y-axis and volume of FA 1/FA 1 cm ³ on x- axis. Axes correctly labelled. 1 II Uniform scales selected. Each scale starts at zero and of the available grid. 1 III and Examiner to check all plotted points. IV Points must be correct to ½ small square and in correct small square. 2 Award III and IV carried out (minimum 5). Award III only if one mistake made. (If only four expts carried out then all 4 correct.) 1 V Draws a "best-fit" straight line - one that passes close to the majority of points and points are balanced. The line does not have to pass through the origin. (Allow curve if appropriate.) 1 EE inclusions Depth (of solution) is greater, so time is shorter/less//time is faster//fewer seconds (<i>time is conditional on depth</i>) 1 or solution/liquid depth unchanged so reaction time unchanged for 1 mark. 1 EE erpretation Give one mark for a concentration of 0.021/0.0214/0.02143 moldm ⁻³ for expt 5. 1 00 Working shown must include correct use of 70. 1

Page 4			Mark Scheme	Syllabus		aper
		GCE	AS/A LEVEL – October/November 2012	9701		33
(e)	ACE Interpre	tation	Two pieces of evidence with no conclusion or one piece and conclusion. 2 nd piece of evidence and conclusion.		1 1	
			 Evidence for 'correct' (i) a straight line/(line with) constant (i) straight line passes through origin (if appropriate from results) is 2 pieces of evidence (ii) line passes through origin = 1 if line of straight 			
			 (iii) points too scattered/not on best fit I (iv) a curve drawn but expect straight line A straight line, not passing through the origin score both marks depending on explanation g 	he origin ine = 2 <i>could</i>		
			(proportional but not directly proportional). If two points are compared they must be on c close to the graph line.	r very		[2
(f)	ACE Interpretation		Candidate correctly evaluates each % uncert	ainty.	1	[1
(g)	ACE		Constant volume of FA 1 .		1	
	Improve s	ement/	Varies volume of FA 2 and water correspond (Volume FA 2 + H_2O same).	ingly	1	[2
				Total	2	5

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	33

	FA	3 is CuC <i>l</i> ₂ (aq);	FA 4 is A <i>l</i> K(SO ₄) ₂ (aq) + KI(aq); FA 5 is FeC <i>l</i> ₃ (aq); FA 6 is Pb(NO	₃) ₂ (aq)	
2	(a)	MMO Collection	Records a blue/greenish-blue ppt/solid with FA 3 and Na_2CO_3 .		
				1	
			Records a brown/rust/orange-brown/red-brown ppt/solid with FA 5 and Na ₂ CO ₃ .		
	Records effervescence with FA 5 (or FA 3).		1		
		MMO	Tests gas evolved with limewater. Allow from effervescence.	1	
		Decisions			[4]
	(b)	MMO Collection	Records a white precipitate with silver nitrate solution and soluble in aqueous ammonia.	1	[1]
	(c)	MMO Collection	Records yellow-brown/orange-brown/brown/tan colour (solid/solution) (formed on mixing FA 4 and FA 3). Allow dark brown for solution only . Allow (qualified) brown solution with white/off-white/grey ppt.	1	
			Dark/deep blue/blue-black/black/purple colour on adding starch solution		
				1	[2]
	(d)	MMO Collection	Mark the observations in the table horizontally or vertically to maximise marks available to the candidate.	4	
					[4]

Test	Observations					
	FA 3	FA 4	FA 5	FA 6		
NaOH(aq)	blue ppt not dark/deep blue ppt	white ppt (which dissolves as more added/then dissolves)	red-brown/orange- brown/brown/rust ppt (not dark/deep brown)	white ppt		
excess NaOH	ppt insoluble (no change no observation provided ppt above)	ppt soluble (if no ppt in 1 st box allow no change)	ppt insoluble (no change no observation provided ppt above)	ppt soluble (not no change after 'no ppt')		
NH₃(aq)	blue ppt not dark/deep blue ppt	white ppt	red-brown/orange- brown/brown/rust ppt (not dark/deep brown)	white ppt		
excess ammonia	(ppt soluble) deep blue soln	ppt insoluble (no change no observation provided ppt above)	ppt insoluble (no change no observation provided ppt above)	ppt insoluble (no change no observation provided ppt above)		

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	33

FA	FA 3 is CuCl ₂ (aq); FA 4 is AlK(SO ₄) ₂ (aq) + KI(aq); FA 5 is FeCl ₃ (aq); FA 6 is Pb(NO ₃) ₂ (aq)						
(e)	ACE Conclusions	Con2 Con2	Give one mark for FA 3 Cu ²⁺ /copper/copper(II) and FA 5 Fe ³⁺ /iron(III). Give one mark for FA 4 and FA 6 Al^{3+} /aluminium, Pb ²⁺ /lead <i>Allow</i> FA 4 Al^{3+} (Pb ²⁺) and FA 6 Al^{3+} , Pb ²⁺ (<i>There must be some correct evidence for Cu</i> ²⁺ <i>and Fe</i> ³⁺ <i>in</i> (d) <i>but does not have to be fully</i> <i>correct.</i>)	1	[2]		
(f)	MMO Decisions	De7	Selects appropriate reagent to distinguish between Al^{3^+} and Pb^{2^+} e.g. KI, K ₂ CrO ₄ , H ₂ SO ₄ , HC <i>l</i> (<i>not</i> BaCl ₂).	1	[1]		
(g)	ACE Conclusions	Con2	No error carried forward in this section.Award the mark for:FA 3FA 4iodideFA 5insufficient tests	1	[1]		
		•	Total	15	5		