MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	23

1 (a) (i)

	S atom has 6 and C atom has 4 electrons	(1)	
	S=C double bonds (4 electrons) clearly shown	(1)	
(ii)	linear and 180°	(1)	[3]
(b) (i)	$CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$	(1)	
(ii)	enthalpy change when 1 mol of a substance	(1)	
	is burnt in an excess of oxygen/air		
	or is completely combusted		
	under standard conditions	(1)	[3]

(c)

CS ₂	+ $3O_2 \rightarrow$	CO_2	+	2SO ₂	
∆ <i>H</i> f [⊖] /kJ mol ^{−1} x		-395		2(–298)	(1)
$\Delta H_{\rm reaction} = -395 + 2(-1)$	-298) - x = -1	110 kJ mol ^{-^}	1		(1)
gives $x = -395 + (-5)$	96) + 1110 = +	119 kJ mol⁻	-1		(1) [3]

(d) (i) $CS_2 + 2NO \rightarrow CO_2 + 2S + N_2$ or $CS_2 + 2NO \rightarrow CO + 2S + N_2O$

(ii) from -2 to 0

- correct products (1)
- correct equation (1)
- **both** required (1) [3]
 - [Total: 12]

	Page 3		3				rk Scheme				Syllabus	Paper	•
				GCE AS/A LEVEL – May/June 2013					9701	23			
2	(a)	(i)	if the	e condit	ions of a s	system	in equilibri	um are	e changed			(1)	
			the p	position	of equilib	rium me	oves so as	s to red	uce that ch	ange		(1)	[2]
		(ii)	lowe	er tempe	erature							(1)	
			beca	ause the	e forward r	eactior	n is exothe	rmic				(1)	
			high	er press	sure							(1)	
			beca	ause the	e forward r	eactior	n shows a	reducti	ion in volum	ne			
			or there	e are fe	wer molec	ules/m	oles on RI	HS of e	quilibrium			(1)	[4]
	(b)				CO_2	+	H_2	\rightleftharpoons	CO	+	H ₂ O		
		initi	ial mo	les	0.70		0.70		0.30		0.30		
		equ	uil. mo	oles	(0.70–x)		(0.70–x))	(0.30+x)		(0.30+x)	(1)	
		equ	uil. co	ncn.	<u>(0.70–x)</u> 1		<u>(0.70–x)</u> 1	<u>)</u>	<u>(0.30+x)</u> 1		<u>(0.30+x)</u> 1		
		K _c ∶	= <u>(0.3</u> (0.7	$\frac{(0+x)^2}{(0-x)^2} =$	1.44							(1)	
		at e		rium,	= 0.70 – 0.	25 = 0	45 moles					(1)	
		and	d		= 0.3 + 0.							(1)	[4]
												[Total	: 10]

	Page 4		Mark Scheme	Syllabus	Paper	,
			GCE AS/A LEVEL – May/June 2013	9701	23	
3	(a) (i)	He c	or Ne or Ar or Kr		(1)	
	(ii)	P or	As		(1)	
	(iii)	Br			(1)	
	(iv)	Na	allow Ar		(1)	
	(v)	Si			(1)	
	(vi)	P all	low Si		(1)	
	(vii)	Cl o	r F or Br		(1)	[7]
	(b) (i)	anv	two from P_4O_6 , SO ₂ and C l_2O_7		(1+1)	
	(ii)	-	D_3 or SiO ₂		(1)	
	(iii)	MgS	SO ₃		(1)	[4]
	(c) (i)	Si is	giant molecular/giant covalent or			
		P, S	, and C <i>l</i> are simple molecular		(1)	
	(ii)	the r	molecules are S_8 , P_4 , Cl_2		(1)	
		large	er molecules have more electrons		(1)	
		and	hence greater van der Waals' forces		(1)	[4]
					[Total:	15]

one mark for each correct compound, R, S and T

allow correct cis and trans versions of compound T for 2 marks (3×1)

(ii) reduction

$$NaBH_4 \text{ or } LiA \mathcal{I}H_4 \text{ or } H_2/Ni \text{ or } Na/C_2H_5OH$$
(1)

dehydration

$$P_4O_{10}/P_2O_5$$
 or H_3PO_4 or conc. H_2SO_4 or Al_2O_3 (1) [5]

(b)

Tollens' reagent	NO REACTION	
HCN	CH ₃ (CH ₂) ₄ C(OH)CH ₃ CN	
K₂Cr₂O ₇ /H ⁺	NO REACTION	

one mark for each correct answer (3×1) [3]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	23
(c) Na_2CO_3	or NaHCO₃ effervescence/colourless gas		
or			
Na colou	irless gas		
or			
PC <i>l</i> ₃ /PC	$l_{\!\scriptscriptstyle 5}$ etc. steamy fumes		
or			
C₂H₅OH	conc. H ₂ SO ₄ sweet smell of ester		
or			
K ₂ Cr ₂ O ₇ /	'H⁺ orange solution becomes green		
correct r	eagent		(1)
correct c	bservation		(1) [2]

[Total: 10]

Page 7		7	Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013	9701	23	
5	(a) (i)	CH ₂ :	=CHCO ₂ H		(1)	
	(ii)	BrCl	H ₂ CHBrCH ₂ OH		(1)	
	(iii)	prod	uct is HOCH ₂ CH(OH)CH ₂ OH			
		corre	ect addition across >C=C<		(1)	
		origi	nal –CH ₂ OH remains		(1)	
	(iv)	HO ₂	CCO₂H		(1)	[5]
	(b) (i)	nucl	eophilic substitution		(1)	
	(6) (1)	nuch			(')	
	(ii)	oxida	ation		(1)	[2]
	(c) (i)	step				
		H_2			(1)	
		heat	with Ni catalyst		(1)	
		step				
		acidi	ified K ₂ Cr ₂ O ₇		(1)	
		heat	or distil off product		(1)	
	(ii)	struc	ctural isomerism			
		or func	tional group isomerism		(1)	[5]
	(d) bo	th oxio	dation and reduction have occurred or			
	dis	propo		(1)	[1]	
					[Total:	13]