MARK SCHEME for the October/November 2013 series

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2			Mark Scheme GCE AS/A LEVEL – October/November 2013		Syllabus 9701	Paper 23	,
1 ((a)			November 2013	5701	25	
. (<u> </u>		NH ₃	CH ₄			
			нххх На Н	H H Č H H	H		
			pyramidal	tetrahedral			
	NH		d-cross' diagrams correct idal or trigonal pyramidal edral			(1) (1) (1)	[3]
((b) (i)	N-H bon $N^{\delta-}-H^{\delta}$		electronegativities		(1)	
	<i></i>	•	pair is unequally shared			(1)	
	(ii)		e is not symmetrical or lo not cancel out			(1)	
	(iii)	has high	higher boiling point than expe er boiling point than methane s soluble in water			(1)	[4]
(one	e co-ordina	nt N–H bonds ate (dative covalent) N–H bon nd between NH₄⁺ and C <i>I</i> ⁻	ıd		(1) (1) (1)	[3]

[Total: 10]

Page 3		8	Mark Scheme Sylla		Paper	
			GCE AS/A LEVEL – October/November 2013	9701	23	
2	(a) (i)	alka	nes or paraffins not hydrocarbons		(1)	
	(ii)	1C ₉ ł	H_{20} + 14 $O_2 \rightarrow$ 9 CO_2 + 10 H_2O		(1)	[2]
	(b) (i)		on on monoxide nes required)		(1) (1)	
	(ii)		is toxic or affects or combines with haemoglobin arbon causes respiratory problems		(1)	
	(iii)	2 C ₁₄	$_{1}H_{30}$ + 15 $O_{2} \rightarrow$ 28C + 30 $H_{2}O$ or			
		2 C ₁₄	H_{30} + 29O ₂ \rightarrow 28CO + 30H ₂ O			
		or o	ther balanced equations such as			
		C₁₄⊦	H_{30} + 11O ₂ \rightarrow 7C + 7CO + 15H ₂ O			
		C₁₄⊦	H_{30} + 18 $O_2 \rightarrow$ 7CO + 7CO ₂ + 15 H_2 0		(1)	[4]
	• •		change when 1 mol of a substance n an excess of oxygen/air under standard conditions		(1)	
			npletely combusted under standard conditions		(1)	[2]
	(d) wor	rking	must be shown			
	(i)		t released = m c δT = 250 × 4.18 × 34.6 157 J = 36.2 kJ		(1) (1)	
	(ii)	mas	$f C_{14}H_{30} = 198$ s of $C_{14}H_{30} = 1.00 \times 0.763 = 0.763 g$ i3 g of $C_{14}H_{30}$ produce 36.2 kJ		(1) (1)	
			a of $C_{14}H_{30}$ produce $\frac{36.2 \times 198}{100}$			
			0.763 94 kJ mol ⁻¹		(1)	[5]
					[Total:	13]

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9701	23

3 (a) (i)

_

halogen	melting point/°C	colour
chlorine	-101	green, yellow or greenish-yellow
bromine	-7	orange or red or brown
		grey
iodine	114	accept black

chlorine and bromine **both** correct iodine correct **for solid**

(1) (1)

> (1) (1)

[4]

 (ii) down the Group there are more electrons in the molecule hence stronger van der Waals' forces

(b) (i)

chlorine	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵
bromine	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{5}$
or	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁵

both needed (1)

(ii) 88r 8 C *l* *

(1) [2]

(c)	(i)	gas or low boiling liquid BrC <i>l</i> has fewer electrons than Br ₂ hence weaker van der Waals' forces	(1) (1) (1)	
	(ii)	accept colours in the range yellow, orange, red, brown	(1)	[4]
(d)	(i)	initially solution begins to turn yellow/brown after several minutes black/dark grey solid formed	(1) (1)	
	(ii)	Cl_2 + 2KI \rightarrow 2KC l + I_2	(1)	
	(iii)	$BrCl + 2KI \rightarrow KCl + KBr + I_2$	(1)	
	(iv)	as oxidising agents	(1)	[5]
			[Total:	15]

Page 5		5	Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2013	9701	23]
4	(a) (i)	struc	ctural or functional group isomerism		(1)	
	(ii)	S pr	imary alcohol and carboxylic acid – not 'acid' imary alcohol and ester mary alcohol and ester		(1) (1) (1)	
	(iii)		Na ₂ CO ₃ oxylic acid		(1)	
	(iv)	with alcol	Na hol and carboxylic acid		(1)	[6]
	(b) (i)	<i>n</i> (C0	D_2) = $\frac{24.0}{24000}$ = 0.001 mol		(1)	
	(ii)		2 mol of $\mathbf{Q} \rightarrow 0.001$ mol of CO_2 ol of $\mathbf{Q} \rightarrow 0.5$ mol of CO_2		(1)	[2]
	(c) (i)	n(H₂	$) = \frac{48.0}{24000} = 0.002 \text{ mol}$		(1)	
	(ii)		2 mol of $\mathbf{Q} \rightarrow 0.002$ mol of H_2 ol of $\mathbf{Q} \rightarrow 1$ mol of H_2		(1)	[2]
	(d) Q is				(1)	
	2H cor	OCH ₂	lium carbonate CH ₂ CO ₂ H + Na ₂ CO ₃ \rightarrow 2 HOCH ₂ CH ₂ CO ₂ Na + H ₂ O roducts	+ CO ₂	(1) (1)	
	HO cor	CH ₂ C	lium metal :H₂CO₂H + 2 Na → NaOCH₂CH₂CO₂Na + H₂ roducts I		(1) (1)	[5]
					[Total:	15]

(b)

w	CH ₃ CH ₂ CH ₂ CO ₂ H
x	CH ₃ CH ₂ COCH ₃
Y	(CH ₃) ₂ CHCO ₂ H
z	no reaction

(4 × 1) [4]

(c) alcohol is X (no mark for this)

products are

 $CH_3CH_2CH=CH_2$

(any two) [2]

[Total: 7]