MARK SCHEME for the October/November 2013 series

9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	41

1 (a)

8 e⁻ around chlorine[1]1 H-electron (+) on the Cl^- ion[1]3 covalent (ox) and one dative (oo) around N[1]

[3]

(b) (i)	it would react (with H ₂ SO ₄)	[1]
---------	---	-----

- (ii) $CaO + H_2O \longrightarrow Ca(OH)_2$ [1]
- (iii) CaO absorbs more water *or* CaO has greater affinity for water [1]
 - [3]

(c)	(i)	$2Ca(NO_3)_2 \longrightarrow 2CaO + 4NO_2 + O_2$	[1]
	(ii)	(Down the group, the nitrates)	
		become more stable/stability increases	[1]
		because the size/radius of ion (\mathbf{M}^{2+}) increases	[1]
		thus causing less polarisation/distortion of the anion/NO ₃ ⁻ /N-O bond	[1]
			[4]

[Total: 10]

	Page 3	ge 3 Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – October/November 2013	9701	41
2	(a) (i)	Si-S	i bonds are weaker (than C-C bonds)		[1]
	(ii)	meta	allic (Sn) is weaker than (giant) covalent (Ge)		[1]
					[2]
	(b) (i)	or Si or Si	$\begin{array}{rcl} &+& 2H_2O & \longrightarrow & SiO_2 + 4HCl \\ &Cl_4 &+& 4H_2O & \longrightarrow & Si(OH)_4 + 4HCl \\ &Cl_4 &+& 3H_2O & \longrightarrow & H_2SiO_3 + 4HCl \\ &Cl_4 &+& 3H_2O & \longrightarrow & H_2SiO_3 + 4HCl \\ &Cl_4 &+& 3H_2O & \longrightarrow & H_2SiO_3 + 4HCl \\ &Cl_4 &+& 3H_2O & \longrightarrow & H_2SiO_3 + 4HCl \\ &Cl_4 &+& 3H_2O & \longrightarrow & H_2SiO_3 + 4HCl \\ &Cl_4 &+& 3H_2O & \longrightarrow & H_2SiO_3 + 2HCl \\ &Cl_4 &+& 3HCl \\ &Cl$		[1]
	(ii)	PbC	$l_4 \longrightarrow PbC l_2 + C l_2$		[1]
	(iii)	SnC	l_2 + 2FeC $l_3 \longrightarrow$ SnC l_4 + 2FeC l_2		[1]
	(iv)	or S	$_{2}$ + 2NaOH \longrightarrow Na ₂ SnO ₃ + H ₂ O nO ₂ + 2NaOH + 2H ₂ O \longrightarrow Na ₂ Sn(OH) ₆ nic equation SnO ₂ + 2OH ⁻ \longrightarrow SnO ₃ ²⁻ + H ₂ O		[1]
					[4]
					[Total: 6]

Page 4		Mark Scheme GCE A LEVEL – October/November 2013	Syllabus 9701	Paper 41	,
() ()			5701		
(a) (I)		+ HZ \longrightarrow NH ₄ ⁺ + Z ⁻ OH + HZ \longrightarrow CH ₃ OH ₂ ⁺ + Z ⁻			[1] [1]
(ii)		+ $B^{-} \longrightarrow NH_{2}^{-}$ + BH $OH + B^{-} \longrightarrow CH_{3}O^{-}$ + BH			[1] [1]
					[4]
(b) (i)	a rea	action that can go in either direction			[1]
(ii)		of forward = rate of backward reaction rward/back reactions occurring but concentrations of a	all species do not	change	[1]
		U	•	0	[2]
(c) (i)	a so	lution that resists changes in pH			[1]
	whe	n small quantities of acid or base/alkali are added			[1]
(ii)	in th	e equilibrium system HZ + $H_2O \Rightarrow Z^- + H_3O^+$			[1]
		tion of acid: reaction moves to the left [⁺] combines with Z ⁻ <u>and</u> forms HZ			[1]
		tion of base: the reaction moves to the right [⁺] combines with OH⁻ <u>and</u> more Z⁻ formed			[1]
				[5 ma	ix 4]
(d) (i)	[H⁺]	= $\sqrt{(0.5 \times 1.34 \times 10^{-5})}$ = 2.59 × 10 ⁻³ (mol dm ⁻³)			[1]
	pH =	2.59/2.6 (min 1 d.p)		ecf	[1]
(ii)	CH ₃	$CH_2CO_2H + NaOH \longrightarrow CH_3CH_2CO_2Na + H_2O$			[1]
(iii)	n(ac	id) in 100 cm ³ = 0.5 × 100/1000 = 0.05 mol id) remaining = 0.05 – 0.03 = 0.02 mol l remaining] = 0.2 (mol dm ⁻³)			[1]
		vise, n(salt) = 0.03 mol + 0.3 (mol dm ⁻³)			[1]
(iv)	pH =	= 4.87 + log(0.3/0.2) = 5.04–5.05		ecf	[1]
					[6]
(e) G i	s CH ₂	CH ₂ COC <i>l</i>			
H is	-				[2]

J is NaCl [2] (or corresponding Br compounds for G, H and J; CH₃CH₂COBr, SOBr₂, NaBr)

[Total: 18]

	Page 5		Mark Scheme	Syllabus	Paper 41	
		GCE A LEVEL – October/November 2013 9701				
4			rgy change) when 1 mol of bonds n in the gas phase			[1] [1]
						[2]
	(b) (i)	(C-X	(bond energy) decreases/becomes weaker (from F to	I)		[1]
		due	to bond becoming longer/not such efficient orbital over	rlap		[1]
	(ii)	•	he bond energy of C-X decreases) the halogenalkane wer must imply that it is from F to I)	s become more i	reactive	[1]
		(······································			[3]
						[0]
			<i>l</i> bond is weaker than the C-F <u>and</u> C-H bonds bond (E = 340) and C-H (E = 410)			[1]
		•	sily) broken to form Cl^*/Cl radicals/Cl atoms the breakdown of O ₃ into O ₂			[1] [1]
						[3]
						641
	• •		H ₂ -CO ₂ H CH ₂ CH ₂ -C <i>l</i>			[1] [1]
	/	\square	ОН			
	<	\bigvee				
	Br	/				[1]
						[3]
	(e) (i)	light	/UV/hv <i>or</i> 300°C			[1]
	(ii)	(free	e) radical substitution			[1]
	(iii)	ΔH	= $E(C-H) - E(H-Cl) = 410 - 431 = -21 \text{ kJ mol}^{-1}$			[1]
	(iv)	ΔH	= $E(C-H) - E(H-I) = 410 - 299 = +111 \text{ kJ mol}^{-1}$		ecf	[1]
	(v)	The	reaction with iodine is endothermic or ΔH is positive of	r requires energy	1	[1]
	(vi)		→ 2C <i>1</i> •			[1]
			$CH_2^{\bullet} + Cl_2 \longrightarrow CH_3CH_2Cl + Cl^{\bullet}$ $CH_2^{\bullet} + Cl^{\bullet} \longrightarrow CH_3CH_2Cl$			[1] [1]
						[8]
					[Total:	

	Page 6		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	41
5	(a) (i)	man	y monomers form a polymer		[1]
	(ii)	addi	tion		[1]
	(iii)		/double/ π bond is broken and new C-C single bond <u>s</u> a puble bond breaks and forms single bonds with other i		[1]
					[3]
	(b) pro	penoi	c acid		[1]
					[1]

(c) (i) CO₂Na CO₂Na

carbon chain **and** CO₂H **at least** one sodium salt

(ii) 120° to 109(.5)° [1] due to the change from a trigonal/sp² carbon to a tetrahedral/sp³ carbon [1]

[4]

[1] [1]

Any four: hydrogen bond **labelled** water H-bonded to O through H atom δ +/ δ - shown on each end of a H-bond lone pair shown on O⁻ or C=O or H₂O on a **correct H-bond** Na⁺ shown as coordinated to a water molecule

(ii) Solution became paler and Cu⁽²⁺⁾ swapped with Na⁽⁺⁾
or darker in colour and polymer absorbs water [1]

[4]

[3]

Page 7	,	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2013	9701	41
(e) (i)	alke	ne(1), amide(1)		[2]
(ii)	$\rm NH_3$			[1]
(iii)	H ₂ O			[1]
(iv)		(aq)/H₃O ⁺ and heat/reflux (not warm) H⁻ (aq), heat and acidify		[1]
	0, 0			[5]
				[Total: 17]

Page 8		Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2013	9701	41
		Section B		
(a) (i)	six/	3 (gsv, sgv, gvs, vgs, svg,vsg)		[
(ii)				
(")	H	o H ₃ C CH ₃		
			он	
			ОН	
	н			
		8		
		displayed peptide bonds		[]
		ect formula of peptide		[`
(iii)	valir	e (allow glycine)		[
(iv)		two of:		
	ionic	rogen bonds and CO_2H or OH or NH_2 or $CONH$ or CO bonds and NH_3^+ or CO_2^-	or NH or CO_2	
	van	der Waals' and –CH ₃ or –H		2 × [
				[
(b) (i)	sam	e shape/structure as substrate		[
		bitor) competes/blocks/binds/bonds to active site		
	or si	ubstrate cannot bind to active site		[
(ii) bind	s with enzyme and changes shape/3D structure (of er	zyme/active site)	[
(ii	i) _			
		No inhibitor		
	teartion +			
	d read	Non-competitive inhibitor		

[1]

[4]

[Total: 10]

Substrate Concentration +

Pa	ge 9		Syllabus	Paper	
		GCE A LEVEL – October/November 2013	9701	41	
(a)	elect	d.c. power supply glass slides rolyte amino acid mixture placed here			
		mer paper source in samer source	ien		
		ver supply (idea of complete circuit) ctrolyte/buffer solution			
	gel/	/filter paper/absorbent paper nino acid) sample/mixture [centre of plate]		4 :	× [1
					[4]
					-
(b)	size cha	<i>two from:</i> e/ <i>M</i> _r (of the amino acid species) arge (on the amino acid species)			
	tem	nperature		2 :	× [1
					[2]
(c)	Pat	tio of the <u>concentration</u> of a solute in each of two (immiscibl	a) solvents		
(0)	ore	equilibrium constant representing the distribution of a solute		vents	
	or F	$PC = [X]_a/[X]_b$ (at a constant temperature)			[1]
					[1]
(-1)	(1)				
(a)	(I)	$K_{pc} = [Z \text{ in ether}]/[Z \text{ in H}_2O] - allow reverse ratio40 = (x/0.05)/((4-x)/0.5)$			[1]
		= 3.2 g		ecf	[1]
	(ii)	First extraction			
	()	40 = (x/0.025)/((4-x)/0.5)		oof	۲4.
		x = 2.67 g		ecf	[1]
	(iii)	Second extraction: 1.33g remain in solution Second extraction 40 = (y/0.025)/((1.33-y)/0.5) y = 0.887 g			
		mass extracted = 2.67 + 0.89 = 3.56/3.6 g		ecf	[1]
					[4]
				[Tetel	
				[Total:	11]

	Page 10		ge 10 Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – October/November 2013	9701	41	
8	(a) ((i)	(nitra	ates are) soluble		[1]
	((ii)	Ba ⁽²⁺	⁺⁾ and Pb ⁽²⁺⁾		[1]
			SO4	2-)		[1]
			BaCO ₃ /PbCO ₃ /CaSO ₄ are insoluble			[1]
						[4]
	(b) ((i)	fertil	isers/animal manure		[1]
	(i	ii)	wasł	ning powder/detergents/fertilisers/animal manure		[1]
	(iii)			/th/production of algae/weeds/plants utrophication		[1]
						[3]
	(c) ((i)	any	one of:		
			2SO	$_{2} + O_{2} \longrightarrow 2SO_{3}$ and $SO_{3} + H_{2}O \longrightarrow H_{2}SO_{4}$		
			or S	$O_2 + NO_2 \longrightarrow SO_3 + NO$ and $SO_3 + H_2O \longrightarrow H_2SO_4$		

or SO ₂ + $\frac{1}{2}O_2$ + H ₂ O \longrightarrow H ₂ SO ₄	[1]
	r.1

(ii)	roasting sulfide ores/extraction of metals from sulfide ores	[1]

[2]

[Total: 9]