Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/41

Paper 4 (Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

bestexamhelp.com

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	41

Qu	estion	Marking point	Marks
1	(a)	oxygen: (1s ²) 2s ² 2p ⁴ fluorine: (1s ²) 2s ² 2p ⁵	1
	(b) (i)	F ₂ O / OF ₂	1
	(ii)	$\begin{array}{c c} \bullet \bullet & ++ & \bullet \bullet \\ \bullet & F & \bullet & \bullet \\ \bullet \bullet & ++ & \bullet \bullet \\ \bullet \bullet & ++ & \bullet \bullet \end{array}$	1
	(iii)	bent or non-linear	1
	(c) (i)	E^{e} values: $F_2/F^- = 2.87 V$ and $Cl_2/Cl^- = 1.36 V$	1
		fluorine (has the more positive E^{e} so) is more oxidising	1
	(ii)	redox	1
	(iii)	$ClF + 2KBr \longrightarrow KCl + KF + Br_2$	1
			[Total: 8]
2	(a) (i)	hydrogen chloride or HC <i>l</i>	1
	(ii)	 either (RCOCl) has two electron-withdrawing groups/atoms, making the more δ+/electron deficient or (RCOCl) has an oxygen, making the carbon more δ+/electron deficient or (RCOCl) has two electron-withdrawing groups, weakening the C-Cl bond 	1
	(b) (i)	CH ₃ CH ₃ P Q	1
	(ii)	step 1: heat with $MnO_4^-/KMnO_4$ (+ acid or alkali)	1
		step 2: PCl_3 + heat or $SOCl_2$ or PCl_5	1
		step 4: LiA <i>t</i> H ₄ (in dry ether)	1
		1	[Total: 7]

Pa	age 3	Combridge Ir	Mark Scher	ne vel – May/June 2015	Syllabus 9701	Paper 41
		Cambridge i		ver – May/Julie 2013	5701	41
3	(a) (i)	isotope	relative abundance			1
		²⁴ Mg	78–79			
		²⁵ Mg	10			
		²⁶ Mg	12–11			
				(total must add u	p to 100 %)	
	(ii)	e.g. 0.78x24 + 0.1	0x25 + 0.12x26 =	24.34		1
	(b) (i)	nitrates become m	ore stable (down	the group)		1
		as the ionic radius or charge density		reases		1
		decreasing its abil	ity to distort/polar	ise the $NO_3^-/nitrate$ ion		1
	(ii)	$4 \text{LiNO}_3 \longrightarrow 2 \text{Li}$	₂ O + 4NO ₂ + O ₂			1
	(iii)	the charge densit sufficiently so the		ions are too small (to polarise ble)	the anion	1
						[Total: 7
4	(a) (i)	$K_{sp} = [Ag^{+}(aq)]^{2}[SC$	D ₄ ^{2–} (aq)] and units	s: mol ³ dm ⁻⁹		1
	(ii)	$K_{sp} = (2 \times 0.025)^2 x$	x (0.025) = 6.25 x	10 ⁻⁵		1
	(b)		ΔH^{0}_{lat}	2Ag ⁺ (g) + SO ₄ 2	²⁻ (g)	
		Ag ₂ S	:O ₄ (s)		hyd	
			ΔH ^o si	Ag ₂ SO ₄ (aq) or 2Ag ⁺ (aq) + SO ₄ ²		1 1 1 1
	(c) (i)	$E^{\circ}_{\text{cell}} (= 0.80 - 0.7)$	7 =) (+) 0.03V and	Ag⁺/Ag or Ag/silver or right		1
	(ii)	E _{cell} would be less	positive/more ne	gative		1
		because the [Ag ⁺ (a	aq)] (in the Ag ele	ctrode) is less than 1.0 mol di	n^{-3}	
	(iii)	no change				1

Page 4	Mark SchemeSyllabusCambridge International A Level – May/June 20159701	Paper 41			
	more negative/less positive	1			
(iv)	the [Ag ⁺ (aq)] will decrease				
	$E_{\text{electrode}}$ becomes less positive or due to the common ion effect	1			
(d)	$[Fe^{3+}(aq)] = 0.2 \text{ mol } dm^{-3}$	1			
	$[H^{+}] = \sqrt{(c.K_a)} = \sqrt{(0.2 \times 8.9 \times 10^{-4})} \text{ or } 1.33 \times 10^{-2} \text{ (mol dm}^{-3})$ pH = $-\log([H^{+}]) = 1.9 \text{ (or } 1.87-1.89)$	1			
	[]	[otal: 13]			
(a)	protons electrons neutrons	1			
	¹⁴ C ²⁻ 6 8 8	1			
(b)	$\begin{array}{ll} CC{\it l}_4: & \text{no reaction} \\ GeC{\it l}_4 \text{ and } SnC{\it l}_4: \text{ for } \textbf{each} \text{ steamy fumes evolved } \textit{or} \text{ white solid produced} \\ GeC{\it l}_4 + 2H_2O \longrightarrow GeO_2 + 4HC{\it l} \\ SnC{\it l}_4 + 2H_2O \rightarrow SnO_2 + 4HC{\it l} \end{array}$	1 1 1 1			
(c)	Ge/Sn use d–orbitals or Ge/Sn have low lying d orbitals or carbon cannot expand its octet or carbon cannot accommodate more than 4 bonded pairs	1			
(d)	$Sn^{4+}/Sn^{2+} = +0.15V$ and $Pb^{4+}/Pb^{2+} = +1.69V$ and $Cl_2/Cl^- = +1.36V$				
	Sn^{2+} is oxidised by Cl_2 because its E° is less positive/more negative or Sn^{2+} is a good reducing agent due to its smaller E value than Cl_2 ora or Pb^{4+} is a stronger oxidising agent than Cl_2 so Pb^{2+} with Cl_2 reaction is not feasible or Sn^{4+} is a weaker oxidising agent than Cl_2 so Sn^{2+} with Cl_2 reaction is feasible	1			
	$SnCl_{2} + Cl_{2} \longrightarrow SnCl_{4}$ or $Sn^{2^{+}} + Cl_{2} \longrightarrow Sn^{4^{+}} + 2Cl^{-}$ or $SnCl_{2} + Cl_{2} + 2H_{2}O \longrightarrow SnO_{2} + 4HCl$	1			
(e) (i)	F = Le	1			
(ii)	moles of $O_2(g) = 130/24000 = 5.417 \times 10^{-3} \text{ mol}$	1			
	moles of electrons needed = $4 \times 5.417 \times 10^{-3}$ or 2.17×10^{-2} mol				
	no. of coulombs passed = 1.2 x 30 x 60 <i>or</i> 2160 C	1			
	no. of electrons passed = $2160/1.6 \times 10^{-19}$ or 1.35×10^{22}	1			
	no. of electrons per mole = $1.35 \times 10^{22}/2.17 \times 10^{-2} = 6.2 \times 10^{23} \text{ (mol}^{-1}\text{)}$	1			

Page 5	Mark SchemeSyllabusCambridge International A Level – May/June 20159701	Paper 41
(a) (i)	CH ₃ COC <i>l</i> or ethanoyl chloride	1
(ii)	electrophilic substitution	1
(iii)	conc HNO ₃ and conc H ₂ SO ₄	1
(iv)	CHI ₃	1
	O O O O O O O O O O O O O O O O O O O	1
(b) (i)		1
(ii)	polyamide <i>or</i> condensation	1
(iii)	H ₂ O/water	1
(iv)	Sn/Fe + HCl + conc/aq/heat/warm	1
(v)	harder <i>or</i> more dense <i>or</i> stronger <i>or</i> higher m.pt <i>or</i> tougher <i>or</i> more rigid due to cross-linking or more H-bonding between the chains	1
	1	[Total: 10

P	age 6		k Scheme nal A Level – May/June 2015	Syllabus 9701	Paper 41
-	(-) (i)			· · ·	
7	(a) (i)		$1 \operatorname{Al}_2 \operatorname{O}_3 / \operatorname{SiO}_2$		1
	(ii)				1
	(iii)				1
		D and E are $CH_3CH=CHCH_2$	CH_3 (one shown as cis, the other as tr	ans)	1
		F is CH ₃ CH ₂ CH ₂ CO ₂ H			1
		G is CH ₃ CO ₂ H			
		H is CH ₃ CH ₂ CO ₂ H			
	(iv)	geometrical or cis-trans or E-	-Z		1
	(b) (i)	No particular conditions or in	the dark		1
	(ii)	electrophilic addition			1
	(iii)	$\begin{array}{c} CH_{3}\\ CH_{-}CH_{2}\\ \overset{\bullet}{\overset{\bullet}}_{Br}\\ \overset{\bullet}{\overset{\bullet}}_{Br} \end{array} \longrightarrow$	$CH_{3} \rightarrow CH_{3}$ $CH_{2} \rightarrow Br$ Br Br	Br	1
					[Total: 10
3	(a) (i)	condensation			1
	(ii)	H ₂ N	ОН ОН ОН ОН		2
	(iii)	any two side-chain interaction	ns mentioned with group		
		Ionic attractions / bonds	between $-CO_2^-$ and $-NH_3^+$		
		van der Waals	between alkyl / aryl / non-polar groups	or valine	2
		hydrogen(H) bonding	between –OH, –NH ₂ , COOH, –NH or se	erine	
		–S–S– <i>or</i> disulfide bonds <i>or</i>	between –SH groups or cysteine		

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	41

Page	8	Mark Scheme Cambridge International A Level – May/June 2015	Syllabus 9701	Paper 41
			5701	71
	(iv)	A piece of leather from an Egyptian tomb		1
		A sample of skin from a mummified body		
		A fragment of ancient pottery	x	
		A piece of wood from a Roman chariot		
(b)	(i)	the electron density in the molecule <i>or</i> positions of atoms <i>or</i> interatomic distance/spacing between the atoms		1
	(ii)	phosphorus has the most electrons or phosphorus has the highest electron density		1
(c)	(i)	equilibrium constant (for the solution) of a solute between two (immi solvents	scible)	1
		or ratio of the concentration of the solute in (each of the) two solver	nts	
		or ratio of the solubility of the solute in (each of the) two solvents		
	(ii)	<u>x/(25/1000)</u> (0.0042–x)/(25/1000)		1
		x = 0.0252 - 6x x = 0.0036g		1
				[Total: 10]
10 (a)	(i)	any three of the following structures $CH_3CH_2CH_3$ $CH_3CH=CH_2$ $CH_3C\equiv CH$ $CH_2=C=CH_2$ H_2 H_2C H_2		2
	(ii)	K since it has the greatest % of hydrocarbons/carbon-containing com or 99.6 % of it is burnt for energy	npounds	1
	(iii)	 any two from reacted with lime/CaO/soda lime/Ca(OH)₂/KOH/NaOH/ liquefied under pressure/≥5 atm dissolved in water under pressure/≥5 atm 		2
(b)	(i)	have a shorter carbon/hydrocarbon chain or shorter hydrocarbon or fewer carbon atoms in its chain or have high H/C ratio		1
	(ii)	Coal		1

Page 9	Mark Scheme Syllabus	Paper
	Cambridge International A Level – May/June 2015 9701	41
	produces the largest amount of SO ₂ or largest combined amount of SO ₂ and NO ₂	
(iii)	they burn at higher temperatures <i>or</i> release more heat on burning	1
(iv)	CO – the gas is toxic/poisonous or references to Hb and ability to carry oxygen	1
	CO ₂ – the gas contributes to global warming	1
		[Total: 1