MARK SCHEME for the March 2016 series

9701 CHEMISTRY

9701/42

Paper 4 (A Level Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Ma Cambridge Internatio	rk Schem nal AS/A	-	– March 20	16	Syllabus 9701	Paper 42
Question			Answe	er			Mark
1 (a)	Increasing 🕈						2
	energy	2p 1	î î	Î	111		
		2s 1	11	↑↓	↑↓		
		1s 1	ļ1	↑↓	↑↓		
		carbo	n atom	n C⁺ion	C ⁻ ion		
(b) (i) s	p ²						1

(b) (i)	sp ²	1
(ii)	$x = 60 / C_{60} H_{60}$	1
(c) (i)	reaction 1: Cl_2 and UV light; reaction 2: $AlCl_3$, Cl_2 (NOT aqueous);	1 1
(ii)	(free) radical substitution	1
(iii)	$Cl \xrightarrow{CCl_3} Cl \qquad or \qquad \bigcirc Cl_3$	1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	42

Que	estion	Answer		Mark		
2	(a) (i)	$Ca^{2+}(g) + 2Cl^{-}(g) \rightarrow CaCl_{2}(s)$ (state symbols required)				
	(ii)	$Ca^{2+}(g) + 2Cl(g) (+ 2e^{-})$ $2^{nd} I.E \text{ of } Ca$ $1^{st} I.E \text{ of } Ca$ $EA \text{ of } Cl \times 2$ $Atomisation/\Delta H_{at} \text{ of } Ca$ $E(Cl-Cl)/2 \Delta H_{at} \text{ of } Cl$ $\Delta H_{f}^{e} CaCl_{2}(s)$	ΔH _{latt} θ	2		
	(iii)	$\Delta H_{\text{latt}}^{\text{e}} = -796 - 242 - 178 - 590 - 1150 + (2 \times 349) = -225$	58 kJ mol ⁻¹	3		
	(b)	(higher temperature means that) particles have more energy; entropy (of the gas/system) increases because of an increas disorder/randomness;		2		
	(c) (i)	$\begin{tabular}{ c c c c c } \hline reaction \\ \hline CO(g) + O_2(g) \rightarrow CO_2(g) \\ \hline Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s) \\ \hline CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4.5H_sO(s) \\ \hline NaHCO_3(s) + H^+(aq) \rightarrow Na^+(aq) + CO_2(g) + H_2O(l) \\ \hline \end{tabular}$	sign of ΔS^{e} negativenegativenegativepositive	2		
	(ii)	there is a reduction in the overall number of <u>gaseous</u> molecules				
	(d)	$\Delta S_{f}^{e} = 386 - (192 + (3 \times 131))$ = -199 (J K ⁻¹ mol ⁻¹)		2		
	(e) (i)	$\Delta G^{e} = \Delta H^{e} - T\Delta S^{e}$ = 117 - ((298 × 175) / 1000) = (+) 64.85 (kJ mol ⁻¹)		2		
	(ii)	ΔG^{e} is positive and so the reaction is <u>not spontaneous</u> (at 298)	3K)	1		

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	42
•	_		

Question	Answer	Mark
3 (a)	Co [Ar] $3d^{7}4s^{2}$ Co ²⁺ [Ar] $3d^{7}$	1
(b)	Energy ——— isolated ion tetrahedral complex	1
(c) (i)	$[Co(Cl)_{3}(H_{2}O)_{3}]^{-}$	1
(ii)	$\begin{array}{c c} Cl & Cl & Cl & Cl \\ Cl & Cl & OH_2 & Cl & Cl & OH_2 \\ Cl & H_2O & OH_2 & Cl & OH_2 \end{array}$	2
(d) (i)	$[Pt(Cl)_2(NH_3)_2]$	1
(ii)	M1, M2: diagrams M3: names CI Pt NH ₃ cis-platin / trans-platin / trans-diamminedichloroplatinum(II)	2
(iii)	(<i>cis</i> isomer) this can react/bond/bind with <u>DNA;</u> which prevents replication of the strand/prevents cell division;	1
(e) (i)	M1: formula M2: units (ecf from formula) $K_{\text{stab}} = \frac{[Cu(NH_3)_4(H_2O)_2^{2^+}]}{[Cu(H_2O)_6^{2^+}][NH_3]^4} \text{mol}^{-4} \text{dm}^{12}$	1
(ii)	(large value of K_{stab} shows that) the tetrammine complex is more stable	1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	42

Question	Answer	Mark
4 (a) (i)	1 st order	1
(ii)	1 st order	1
(iii)	rate = k[CH₃CHO][OH⁻]	1
(iv)	mol ⁻¹ dm ³ s ⁻¹ (or per any suitable time unit)	1
(v)	calculation from candidate's answer to (iii) (expected answer = 6)	1
(b) (i)	rate-determining step: step 1 explanation: both reactant species are in step 1/rate-determining step	1
(ii)	acid/proton donor/acidic behaviour	1
(c)	nucleophilic addition	1
(d)	M1: both curly arrows M2: dipole correctly shown $CH_3 \xrightarrow{\delta^+} CH_2 \xrightarrow{\delta^-} H$	1

Page 6		yllabus 9701	Paper 42			
Question	Answer		Mark			
5 (a) (i)	any metal with an <i>E</i> ^e value more negative than –0.41V, e.g. Fe, Mn, Zn, Mg, Cr, A <i>l</i> R: Li/Na/K/Ca/Ba					
(ii)	(ii) M1: value of E_{cell} correctly calculated (with correct sign) for metal named in (i) M2: E_{cell}^{e} is positive and so reaction is feasible					
(b)	M1: $(Cr_2O_7^{2^-} + 14H^+ + 6e^- \Rightarrow 2Cr^{3^+} + 7H_2O)$ $(H_2O_2 + 2H^+ + 2e^- \Rightarrow 2H_2O)$ $E^{\circ} = +1.33 V$ $E^{\circ} = +1.77 V$ $E^{\circ}_{cell} = 0.44 (V)$		1			
	M2 : E°_{cell} (0.44 V) is positive (so the reaction is feasible)/ $E^{\circ}(\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+1})$ positive than $E^{\circ}(\text{H}_2\text{O}_2/\text{H}_2\text{O})$	⁺) is less	1			
(c)	M1: $Cr_2O_7^{2-}$: ox.no Cr = +6 because $-2 = 2 \times ox.no(Cr) + (7 \times -2)$ CrO_4^{2-} : ox.no Cr = +6 because $-2 = ox.no(Cr) + (4 \times -2)$ M2: no change in oxidation number, so reaction is not redox		1			
(d)						

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	42

Questi	on		Answer		Mark
6 (a)			identity	or value	3
		V	-	chlorine	
		v	nitrogen or		
		X	NO/NO ₂	ClO ₂ /ClO ₃	
		m	2, 3	1,2,3, or 4	
		w	sul	lfur	
		Y	SO ₂ c	or SO ₃	
		n	4,	3	
(b)	•	te precipitate ing the group	e is BaSO₄) o ∆H _{sol} becomes more er	ndothermic/positive;	1
	$\Delta H_{latt} dec \Delta H_{hyd} de$		omes more endothermic omes more endothermic	/becomes less exothermic /becomes less exothermic	2

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	42

Question	Answer			
7 (a) (i)	M1: phenol is more acidic than ethanol because the O–H bond in phenol is weakened/the phenoxide anion is stabilised/ethanol has an electron donating group M2: p orbital/lone pair of electrons on O can be delocalised over/overlaps with ring			
(ii)	(ii) reagent conditions Structure		Structure	3
	HNO ₃	dilute, 5°C		
	Br ₂	aqueous (I: temperature)	Br Br	
(iii)	electrophilic substitution			
(b) (i)	white precipitate/solid			
(ii)	between 0°C and 10°C			1
(iii)	M1: double bond between nitrogen atoms			1
	M2: rest of molecule			
(c) (i)	$CH_{3} \xrightarrow{CH_{3}}_{C} \xrightarrow{CH_{3}}_{CH_{2}NH_{2}}$			1
(ii)	$\begin{array}{c} CH_{3} \\ CH_{3$			

Page 9	Mark Scheme Syllabus			Paper
	Cambridge International AS/A Level – March 2016 9701			42
Question	Answer			
8 (a)	 P amide Q ketone R secondary alcohol Q = carbonyl and R = alcohol scores [1] 			1 1 1
(b)	H_3C H_1 H_2 H_3			1
(c) (i)	see line on diagram in (b)			1
(ii)	ОН			1
(d)	reagent	observation		3
	alkaline iodine solution	yellow ppt. formed		
	universal indicator	blue/purple colour formed		
	2,4-dinitrophenylhydrazine	yellow/orange ppt formed		
	Tollens' reagent	no reaction		
(e) (i)	LiAlH4			1
(ii)	(must be skeletal)			1
(iii)	CH ₃ CH ₃ CH ₃ CH ₃			1

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	42

Q	uestion	estion Answer		Mark		
9	(a) (i)	polyester : <i>Terylene</i> / polylactic acid (PLA) / polyamide : nylon / <i>Kevlar</i> / Nomex			1	
	(ii)	water or hydrochloric a	acid/hydrogen	chloride		1
	(b) (i)		polymer biodegradable			2
			Α	yes	_	
			В	yes	-	
			С	no		
			D	yes		
	(ii)	HOCH ₂ CH ₂ OH and		or equivaler or equivaler	nt 1,4-diacyl chloride nt 1,4-diester	2
	(c) (i)	V: it has two amine/NH ₂ groups (which can be protonated) <i>or</i> it has an amine/NH ₂ group on its side chain/R group			1	
	(ii)	four (TT, TU, UT, UU)			1	
	(iii)	hydrogen bonds; between the O/N atoms or named group (in the polypeptide) and water; or ion-dipole attractions; between NH_3^+/CO_2^- and water;			2	