

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

9701/21 May/June 2016

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question					Mark	Scheme			Mark	Total
1 (a)	name of element	nucleon no.	atomic no.	no. of protons	no. of neutrons	no. of electrons	overall charge			
	lithium	6	3	3	3	2	+1		[1]	
	oxygen	17	8	8	9	10	-2		[1]	[4]
	iron	54	26	26	28	24	+2		[1]	
	chlorine	35	17	17	18	17	0		[1]	
(b)	line straight (line (curving) proton line cl) up labelle	d 'protons	,	ection than e	electron curv	′e		[1] [1] [1]	[3]
(c) (i)	Group 16/6/ AND Big (owtte) ir		g differenc	e∕big gap	/big jump/j	ump in incre	ease/jump	in difference after 6th IE	[1]	[1]
(ii)	increases (a	cross perio	d) due to i	increasing	attraction (of nucleus fo	or electron	3)	[1]	
	due to increa constant/sim						vel		[1]	[2]
(iii)	electron (pai (Y has a) pai	, i) <u>p</u> orbital/a	a (3) <u>p</u> orbita	<u>l</u> is full ORA			[1] [1]	[2]
(iv)	(1s ²)2s ² 2p ⁶ 3	s ² 3p ⁵							[1]	[1]
(d) (i)	0.56(%)								[1]	[1]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(ii)	$\frac{(A \times 0.56) + (86 \times 9.86) + (87 \times 7.00) + (88 \times 82.58)}{100} = 87.71$	[1]	[2]
	A = 84	[1]	
			[16]
2 (a)	D = Ga G = Se	[1]	[1]
(b) (i)	$D_2O_3 + 6HCl \rightarrow 2DCl_3 + 3H_2O$ M1 = species; M2 = balancing	[1] [1]	[2]
(ii)	$\begin{array}{l} \textbf{D}_2 O_3 \ + \ 2 NaOH \ + \ 7 H_2 O \ \rightarrow \ 2 Na \textbf{D}(OH)_4 (H_2 O)_2 \ OR \\ \textbf{D}_2 O_3 \ + \ 2 NaOH \ + \ 3 H_2 O \ \rightarrow \ 2 Na \textbf{D}(OH)_4 \ OR \\ \textbf{D}_2 O_3 \ + \ 2 NaOH \ \rightarrow \ 2 Na \textbf{D}O_2 \ + \ H_2 O \ OR \\ \textbf{D}_2 O_3 \ + \ 2 OH^- \ + \ 7 H_2 O \ \rightarrow \ 2 [\textbf{D}(OH)_4 (H_2 O)_2]^- \ OR \\ \textbf{D}_2 O_3 \ + \ 2 OH^- \ + \ 3 H_2 O \ \rightarrow \ 2 [\textbf{D}(OH)_4]^- \ OR \\ \textbf{D}_2 O_3 \ + \ 2 OH^- \ + \ 3 H_2 O \ \rightarrow \ 2 [\textbf{D}(OH)_4]^- \ OR \\ \textbf{D}_2 O_3 \ + \ 2 OH^- \ + \ 3 H_2 O \ \rightarrow \ 2 [\textbf{D}(OH)_4]^- \ OR \\ \textbf{D}_2 O_3 \ + \ 2 OH^- \ \rightarrow \ 2 \textbf{D}O_2^- \ + \ H_2 O \end{array}$		[2]
	M1 = species; M2 = balancing	[1] [1]	
(c)	giant ionic/ionic lattice	[1]	[1]
(d)	$\mathbf{GO}_2 + \mathbf{H}_2\mathbf{O} \rightarrow \mathbf{H}_2\mathbf{GO}_3$	[1]	[1]
			[7]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
3 (a) (i)	bubbles/effervescence/fizzing	[1]	
	calcium gets smaller/disappears	[1]	max
	water turns cloudy/milky	[1]	[3]
	calcium sinks	[1]	
(ii)	$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$	[1]	[1]
(iii)	faster bubbling/disappearance of Ba OR no/less precipitate forms (owtte)	[1]	[1]
(b) (i)	energy Ea reactants AH products reaction pathway		[2]
	M1 – general layout with products below reactants AND both labelled	[1]	
	M2 – E_a and ΔH /energy change/released labelled with vertical lines	[1]	
(ii)	activation energy is high	[1]	[2]
	so few/no particles with $E \ge E_a$	[1]	[`]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(iii)	high melting/boiling point	[1]	[0]
	strong forces (of attraction/between oppositely charged ions)/ strong (ionic) bonding	[1]	[2]
(iv)	MgO is basic / reacts with acid	[1]	[1]
(c) (i)	increases (down the group)	[1]	[1]
(ii)	$MgCO_3 \rightarrow MgO + CO_2$	[1]	[1]
(iii)	$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$	[1]	[1]
			[15]
4 (a)	$CH_2=CHCH_2CH_3/CH_2CHCH_2CH_3$ AND $CH_3CH=CHCH_3/CH_3CHCHCH_3$	[1]	[1]
(b)	$CH_2=CHCH_2CH_3/CH_2CHCH_2CH_3$ AND $(CH_3)_2C=CH_2/(CH3)_2CCH_2$	[1]	[1]
(c)	$H_{3}C-C$ $H_{3}C-C$ $H_{3}C-C$ $H_{3}C-C$ $H_{3}C$ $H_$	[1]	[2]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(d)	B is CH_2 =CHCH ₂ CH ₃ OR CH ₃ CH=CHCH ₃ OR (CH ₃) ₂ C=CH ₂	[1]	
	distinguished by addition of bromine	[1]	[3]
	brown/red/orange/yellow to colourless/decolourises with B (but not A)	[1]	
			[7]
5 (a)	$H_{3}C \xrightarrow{H_{\delta^{+}}}_{(H)} \xrightarrow{\delta^{-}}_{(H)} \xrightarrow{H_{3}C} \xrightarrow{H_{3}C}_{(H)} CN + Br^{-}$		
	TCN		[2]
	M1 = lone pair on C of CN- AND curly arrow from lone pair to C of C—Br	[1]	
	M2 = correct dipole on C—Br, curly arrow from C—Br bond to Br AND Br ⁻	[1]	
(b) (i)	reduction	[1]	[1]
(ii)	disappearance of peak/dip/trough/absorption at 1680–1730	[1]	
	due to (loss of) C=O	[1]	
	OR		[2]
	peak at 3200–3650	[1]	
	due to (alcohol) O—H (formation)	[1]	
(c) (i)	sodium/potassium hydroxide aqueous	[1] [1]	[2]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	21

Question	Mark Scheme	Mark	Total
(ii)	ethanol	[1]	[1]
(d) (i)	(conc) $H^+/(conc)$ acid/(conc) $H_2SO_4/(conc)H_3PO_4$	[1]	[1]
(ii)		[1]	[1]
(iii)	ethyl propanoate	[1]	[1]
(e) (i)	$V = CH_3CH_2CHCHCH_2CH_3 / CH_3CH_2CH=CHCH_2CH_3$ $T = CH_3CH_2CH(OH)CH(OH)CH_2CH_3$	[1] [1]	[2]
(ii)	V = geometric(al)/ <i>cis-trans</i> / <i>E</i> – <i>Z</i> T = optical	[1] [1]	[2]
			[15]