

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

9701/22 May/June 2016

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	22

Question				Ansv	ver			Mark	Total
1 (a)	name of element	nucleon number	atomic number	number of protons	number of neutrons	number of electrons	overall charge		
	boron	10	5	5	5	5	0	[1]	
	nitrogen	15	7	7	8	10	-3	[1]	
	lead	208	82	82	126	80	+2	[1]	
	lithium	6	3	3	3	2	+1	[1]	[4]
(b) (i)	Group 17/VII/	7							
	AND								
	big (owtte) incr	rease/big diffe	rence/big gap	/big jump/jum	p in increase/j	ump in differend	ce after 7th IE	[1]	[1]
(ii)	increases acro	oss period due	to increasing a	attraction (of nu	cleus for electr	rons)		[1]	
	due to increasi same (outer) s			roton number A	AND constant/	similar shielding]/	[1]	[2]
(iii)	1s ² 2s ² 2p ⁶ 3s ² 3	p ⁴						[1]	[1]
(c) (i)	(100 – 99.76 –	0.04=) 0.2						[1]	[1]
(ii)	<u>0.2x + (99.76</u>	<u>× 16) + (0.04 ×</u> 100	<u>17)</u> = 16.0044	4				[1]	
	x = 18							[1]	[2]
								[То	tal 11]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	22

Question	Answer	Mark	Total
2 (a) (i)	enthalpy/energy/heat change when one mole of gaseous atoms is produced	[1]	
	from the element in its standard state	[1]	
	under standard conditions	[1]	[3]
(ii)	fluorine and chlorine are gases/bromine liquid and iodine solid OR		
	as ΔH_{at} for bromine/iodine also includes changes of state	[1]	[1]
(iii)	$(\frac{1}{2}Cl_2 + \frac{1}{2}I_2 \rightarrow ICl)$		
	$\Delta H_{\rm f} = (\frac{1}{2} E(Cl_2) + \frac{1}{2} E(I_2)) - E(ICl) OR E(ICl) = (151/2) + (242/2) + 24$	[1]	
	E(IC <i>l</i>) = (+) 220.5/221	[1]	[2]
(b) (i)	stronger/more/greater id-id/London/dispersion forces	[1]	
	due to increasing numbers of electrons	[1]	[2]
(ii)	(intermolecular forces in HF are) hydrogen bonds (which are) stronger (than vdW)/more energy needed to separate molecules OR	[1] [1]	[2]
	HF much more polar / F much more electronegative Intermolecular forces in HF stronger (than in HC <i>l</i> , HBr, HI)	[1] [1]	
(c) (i)	$\mathbf{P} = \text{iodine} / I_2 / I; \mathbf{Q} = \text{chlorine} / Cl_2 / Cl$	[1]	[1]
(ii)	weaker H-P than H-Q bond ORA/easier /less energy to break H-P than H-Q ORA	[1]	
	due to greater distance/shielding of nucleus from bond pair ORA	[1]	[2]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	22

Question	Answer	Mark	Total
(iii)	$2\text{HP} (\text{or } 2\text{HI}) \rightarrow (\text{or} \rightleftharpoons) \text{H}_2 + \text{P}_2 (\text{or } \text{I}_2)$	[1]	[1]
(iv)	$Ag^{+}(aq) + \mathbf{Q}^{-}(aq) \text{ (or } Cl^{-}) \rightarrow Ag\mathbf{Q}(s) \text{ (or } AgCl(s))$	[1]	
	$Ag\mathbf{Q}(s)/AgCl(s) + 2NH_3(aq) \rightarrow Ag(NH_3)_2^{+}(aq) + \mathbf{Q}^{-}(aq)/Cl^{-}(aq)$	[1]	[2]
(d) (i)	no of C <i>l</i> increases by one each time/matches group number	[1]	
	due to increasing number of valence/outer(most/shell) electrons/oxidation number/valency (of Mg, Al, Si)	[1]	[2]
(ii)	$MgCl_2 (+aq) \rightarrow Mg^{2+} + 2Cl^-$	[1]	
	$AlCl_3 + 6H_2O \rightarrow Al(H_2O)_6^{3+} + 3Cl^- / Al(H_2O)_5(OH)^{2+} + H^+ + 3Cl^-$	[1]	
	$SiCl_4 + 2H_2O \rightarrow SiO_2 + 4H^+ + 4Cl^-$	[1]	[3]
		[Tot	al 21]
3 (a)	$Cr_2O_7^{2-} + 8H^+ + 3H_2C_2O_4 \rightarrow 2Cr^{3+} + 6CO_2 + 7H_2O$ M1 = species M2 = balancing	[1] [1]	[2]
(b) (i)	$(0.02 \times 32.0/1000 =) 6.40 \times 10^{-4}$	[1]	[1]
(ii)	$(6.4 \times 10^{-4} \times 3 =)1.92 \times 10^{-3}$	[1]	[1]
(iii)	$(0.242/1.92 \times 10^{-3} =) 126(.0)$	[1]	[1]
(iv)	(126 – 90 = 36; 36/18 = 2 hence) x = 2	[1]	[1]
		[Tot	al 6]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	22

Question	Answer	Mark	Total
4 (a)	CH ₃ CH ₂ CH ₂ COOH	[1]	
	(CH ₃) ₂ CHCOOH/CH ₃ CH(CH ₃)COOH	[1]	[2]
(b) (i)	Two from 1. $CH_3CH_2COOCH_3$ 2. $CH_3COOCH_2CH_3$ 3. $HCOOCH_2CH_2CH_3$	[1] [1]	[2]
(ii)	correct acid + alcohol for either ester 1. methanol + propanoic acid 2. ethanol + ethanoic acid 3. propan-1-ol + methanoic acid	[1]	101
	(conc)H ₂ SO ₄ /(conc)H ₃ PO ₄ AND heat/warm/reflux	[1]	[2]
(c)	Peak at 1710–1750 (for ester) due to C(=)O Peak at 1500–1680 (for X) due to C(=)C/alkene Peak at 3200–3650 (for X) due to (alcohol) O(–)H	[1] [1] [1]	[3]
		[Tot	al 9]
5 (a) (i)	acidified / H ⁺		
	AND		
	potassium/sodium dichromate	[1]	[1]
(ii)	distillation (rather than reflux)	[1]	
	(ensures aldehyde escapes) to avoid further oxidation/to avoid forming acid/as reflux causes further oxidation	[1]	[2]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	22

Question	Answer	Mark	Total
(b)	reaction 3 – (conc) $H_2SO_4/(conc) H_3PO_4$ or $Al_2O_3/pumice/porcelain/porous pot/ceramic$		
	AND heat		
	reaction 4 – KBr/NaBr with (conc) H_2SO_4 or (red)P and Br_2/PBr_3	[1]	
	AND heat	[1]	[2]
(c) (i)	$\begin{array}{c} CH_{3}CH_{2} \\ H \\ H \\ N \equiv C^{2} \\ H \\ $	[1] [1] [1] [1]	[4]
(ii)	$CH_{3}CH_{2}$	[1+1]	
			[2]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	22

Question	Answer	Mark	Total
(iii)	attack/attach from either side/above or below/from two directions because the carbonyl/molecule is planar/trigonal/flat/because of the shape of the molecule	[1] [1]	
	OR product is chiral/has a chiral carbon/has a carbon attached to four different groups/has a chiral centre/is asymmetric (equal) chance of forming either (of the two optical isomers)/mechanism doesn't distinguish between the two (optical isomers)/able to form either/chance of forming/able to form 50:50		
	OR because the carbonyl/molecule is planar/trigonal/flat OR because of the shape of the molecule (equal) chance of forming either (of the two optical isomers)/mechanism doesn't distinguish between the two (optical isomers)/able to form either/chance of forming/able to form 50:50		[2]
		[Tota	al 13]