

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

9701/42 May/June 2017

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer	Marks
1(a)(i)	increases down the group	1
	radius / size of (cat)ion/M ²⁺ increases	1
	less polarisation / distortion of anion / carbonate ion / CO_3^{2-}	1
1(a)(ii)	Na ⁺ has smaller ionic charge and larger ionic radii	1
	OR the charge density of the Na⁺ is lower	
1(b)(i)	$2KHCO_3 \longrightarrow K_2CO_3 + CO_2 + H_2O$	1
1(b)(ii)	NaHCO₃ because Na ⁺ is smaller OR charge density Na ⁺ is larger	1
1(c)(i)	$LE = \Delta H_{f} - 2(\Delta H_{at} + IE) - \frac{1}{2}(O=O) - (EA_{1} + EA_{2})$ = -361 - 2(89) - 2(418) - 496/2 - (-141+798) = -2280 (kJ mol ⁻¹) correct answer scores [3]	3 1 1 1
1(c)(ii)	LE of Na ₂ O will be more negative AND as Na ⁽⁺⁾ is smaller / larger charge density / smaller radii AND so greater attraction (between the ions) OR (ionic) bonds will be stronger	1
	Total:	10

Question	Answer	Marks
2(a)	Add AgNO ₃ Cl^{-} gives a white ppt and I ⁻ gives a yellow ppt.	1
	Add NH ₃ (aq); ppt dissolves and ppt is insoluble	1
2(b)(i)	conductivity decreases during the reaction, AND number of Na ⁺ / I ⁻ / ions are decreased / used up (from solution)	1
2(b)(ii)	(Equilibrate) solutions at 40 °C / with a water bath (cannot be after mixing)	3
	mix known volumes and start the clock / timing clearly mentioned/implied	
	measure conductance / conductivity at regular intervals / every measured time [method A] OR measure the time for conductance to go to zero / a specific value / to be constant [method B]	
	prepare a curve of conductance vs. time [related to method A] OR prepare a curve of conductance vs. concentration [related to method A] OR repeating the experiment at different concentrations [related to method A and B] any 3 points	
2(c)(i)	[R-Cl]: rate increases by $5/3$ when concentration increases by $10/6$ ($5/3$), so order = 1	1
	[I ⁻]: rate increases by $5/3$ when concentration increases by $5/3$, so order = 1	1
2(c)(ii)	rate = $k[I^-][CH_3CH_2CHCICH_3]$ AND units of $k = dm^3 mol^{-1} s^{-1}$	1
2(c)(iii)	relative rate = 5 / 5.3	1

Question	Answer	Marks
2(d)(i)	either S _N 1 or S _N 2 mechanism $I \xrightarrow{CH_3}_{[\delta_1]{\delta_1}} \qquad $	
	C-C1 dipole AND C-C1 curly arrow	1
	intermediate cation OR 5-valent transition state (charge essential)	1
	I ⁻ with lone pair AND other curly arrow	1
2(d)(ii)	If S _N 1 in 2(d)(i) mixture of / two optical isomers will be formed, AND the intermediate can be formed by the I [−] approaching from top or bottom plane If S _N 2 in 2(d)(i) one optical isomer AND attack always from fixed direction / opposite side	1

Question		Answer		Marks
2(e)(i)	4 peaks			1
2(e)(ii)	CH ₃ CH ₃ CH ₃ CH ₃	CH_3 CH_3 CH_2 CH_3 H Cl		1 + 1
	number of peaks = 2	number of peaks = 3		1
			Total:	18

Question	Answer	Marks
3(a)	$\begin{array}{c} \cdot & \cdot \\ \cdot & \cdot \\$	
	four shared pairs: S=O and $2 \times S-Cl$	1
	all (9) lone pairs	1
3(b)(i)	$NaOH + HCl \longrightarrow NaCl + H_2O$	1
	$2NaOH + SO_2 \longrightarrow Na_2SO_3 + H_2O$	1

Question	Answer	Marks
3(b)(ii)	moles (at start) = $0.5 \times 60 / 1000 = 3 \times 10^{-2}$ AND moles (at end) = $0.5 \times 10.8 / 1000 = 5.4 \times 10^{-3}$	1
	moles reacted (= $(30-5.4) \times 10^{-3}$ =) 2.5 × 10 ⁻² correct ans. scores [2]	1
3(b)(iii)	moles of $RCO_2H = 2.46 \times 10^{-2}/3 = 8.2 - 8.3 \times 10^{-3}$ mole	1
3(b)(iv)	$M_{\rm r} = 1.00 / (8.2 \times 10^{-3}) = 121.95 \ (=122)$	1
3(b)(v)	$C_7H_6O_2$ OR $C_6H_5CO_2H$	1
3(c)(i)	LiA <i>l</i> H ₄	1
3(c)(ii)	angelic acid T CO_2H U NH_2	3
3(c)(iii)	angelic acid: geometrical OR cis-trans compound T: optical	1
	Total:	14

May/June 2017	
---------------	--

Question	Answer	Marks
4(a)(i)	$M_{\rm r} = 52 + 6 \times 18 + 3 \times 35.5 = 266.5$	1
4(a)(ii)	$1.00g = 1/266.5 \text{ OR } 3.75 \times 10^{-3} \text{ moles (of complex in 1g)}$ for A , n=2 AND [Cr(H ₂ O) ₄ C <i>l</i> ₂]C <i>l</i> .2H ₂ O for B , n=1 AND [Cr(H ₂ O) ₅ C <i>l</i>]C <i>l</i> ₂ .H ₂ O for C , n=0; AND [Cr(H ₂ O) ₆]C <i>l</i> ₃	2
4(b)(i)	Geometric(al) / cis-trans	1
4(b)(ii)	$R_{3}P \xrightarrow{CN}_{Ni} PR_{3} R_{3}P \xrightarrow{CN}_{Ni} CN$ isomer 1 isomer 2	1
4(b)(iii)	isomer 2 AND dipoles do not cancel OR CN ⁻ are on the same side of the molecule	1
	Total:	6

Question	Answer	Marks
5(a)(i)	<i>bidentate</i> : (a species that) forms <u>two</u> dative bonds / donates <u>two</u> lone pairs	1
	ligand: a species that uses a lone pair to form a dative bond to a metal atom / metal ion	1
5(a)(ii)	$\left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	3
5(b)(i)	$K_{\text{stab1}} = [Cu(NH_3)_4^{2+}]/[Cu^{2+}][NH_3]^4$	1
	$K_{\text{stab}2} = [Cu(en)_2^{2^+}]/[Cu^{2^+}][en]^2$	1
	$mol^{-4} dm^{12} AND mol^{-2} dm^{6}$	1
5(b)(ii)	$K_{eq3} = K_{stab2} / K_{stab1}$	1
5(b)(iii)	$K_{eq3} = K_{stab2} / K_{stab1} = 4.4(2) \times 10^{6}$	1
	mol ² dm ⁻⁶	1
5(c)(i)	$(\Delta S_{eq1} \text{ is negative as}) \text{ more / 5}$ moles of reactants are forming (one mole of) the complex OR (ΔS_{eq2} is positive as) fewer / 3 moles of reactants are forming (one mole of) the complex	1
5(c)(ii)	$\Delta G_{eq2} = -100 - 298 \times 40 / 1000 \text{ OR } \Delta G = \Delta H - T\Delta S$ = -112 or -111.9 (kJ mol ⁻¹) correct answer [2]	2 1 1

May/June	2017
----------	------

Question	Answer	Marks
5(c)(iii)	Since (ΔG_{eq2}) is more negative (than ΔG_{eq1}) AND equilibrium 2 is more feasible	1
5(c)(iv)	$\Delta H_{(3)} = -8 \text{ (kJ mol}^{-1}\text{)}$	1
5(c)(v)	ligand exchange / replacement / substitution / displacement	1
	Total:	17

Question	Answer	Marks
6(a)(i)	the lower / smaller the pK_a , the stronger the acid	1
6(a)(ii)	$pK_a = -\log(K_a)$ or $pK_a = -\lg(K_a)$ or $K_a = 10^{-pka}$	1
6(a)(iii)	(stronger than ethanoic acid because) Cl is electron-withdrawing	1
	and so stabilises the RCO ₂ ⁻ anion / conjugate base or weakens O-H bond (so H ⁺ is more easily released)	1
6(b)(i)	$NH_{3}^{+}CH_{2}CO_{2}^{-} \longrightarrow NH_{2}CH_{2}CO_{2}^{-} + H^{+}$ $OR NH_{3}^{+}CH_{2}CO_{2}^{-} + H_{2}O \longrightarrow NH_{2}CH_{2}CO_{2}^{-} + H_{3}O^{+}$	1
6(b)(ii)	$\begin{split} \mathcal{K}_{a} &= 10^{-9.87} = 1.35 \times 10^{-10} \\ [\text{H}^{+}] &= \sqrt{(\mathcal{K}_{a}.c)} = 3.67 \times 10^{-6} \end{split}$	1
	pH = 5.4 (5.43–5.44) min 2sf	1

Question	Answer	Marks
6(b)(iii)	curve starts at 5.4 and continuous	1
	vertical portion (end point) at vol added = 10.0 cm^3	1
	finishes at pH = 12.5 at 20 cm³ (and does not increase in pH)	1
	Total:	10

Question			Answer		Marks
7(a)	w	X	Y	Z	5
	acyl chloride / COC/	methyl ketone / CH3CO group aryl chloride	aldehyde / CHO chloro(alkane) / RC <i>l</i>	Alkene / C=C phenol / C ₆ H ₅ OH aryl chloride	
	0–1 [0]; 2 [1]; 3 [2]; 4 [3];	5 [4]; 6–8 [5]			

Question	Answer	Marks
7(b)(i)	$\mathbf{w} \bigoplus_{i=1}^{CH_2COCI} \bigoplus_{i=1}^{COCI} \mathbf{x} \bigoplus_{i=1}^{COCH_3} COCH_3$	1+1
	Y CHO CHO or CH ₂ Cl Z HO CH ₂ Cl CH=CH ₂	1 + 1
7(b)(ii)	Y CHO OR any chiral atom correctly labelled	1
	Total:	10

Question	Answer	Marks
8(a)(i)	step 1 electrophilic substitution ignore acylation	1
	step 2 nucleophilic addition	1
8(a)(ii)	hydrolysis	1

May/June 2017

Question	Answer	Marks
8(a)(iii)	step 1 $ClCH_2CHO$ (allow Br, I for Cl)	1
	AlCl ₃	1
	step 2 HCN + NaCN	1
	step 3 heat in H_3O^+ / heat $H^+(aq)$	1
	step 5 NH ₃ under pressure (+ heat) or heat NH ₃ in a sealed tube	1
8(a)(iv)	with NaOH(aq)	1 + 1
	$-0 \qquad \qquad$	1
	$HO \qquad \qquad$	
	with $Br_2(aq)$ Br $+NH_3$ Br $O_2^ Or$ HO $O_2^ Or$ HO Br $O_2^ [1]$	1
8(b)(i)	P is tyr	1
	tyr is 2– AND it is small / has a small <i>M</i> r	1

Question	Answer	Marks
8(b)(ii)	(dipeptide / phe-tyr) 2– is about double the M_r / mass of (phe) 1	1
	OR mass / charge ratios are about the same for each (for dipeptide / phe-tyr and phe)	
	Total:	15