Cambridge International **AS & A Level**

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER	CANDIE		
·	ced Practical Skills 2	Ν	9701/32 /lay/June 2018 2 hours
	wer on the Question Paper.		
Additional Mate	rials: As listed in the Confidential Instructions		
READ THESE	INSTRUCTIONS FIRST		
Write in dark b You may use a Do not use sta	the practical session and laboratory where appropriate, in the bo ue or black pen. n HB pencil for any diagrams or graphs. bles, paper clips, glue or correction fluid. E IN ANY BARCODES.		
You may lose r	stions. Ilators may be used. narks if you do not show your working or if you do not use appro Booklet is unnecessary.	priate units.	
	lysis Notes are printed on pages 10 and 11.	Ses	sion
	eriodic Table is printed on page 12.		
	e examination, fasten all your work securely together. marks is given in brackets [] at the end of each question or	Laboi	ratory
		For Exam	iner's Use
		1	

IB18 06_9701_32/5RP © UCLES 2018 This document consists of **12** printed pages.

2

3

Total

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Many metal hydroxides decompose when heated to produce water vapour and the metal oxide as residue.

In this experiment, you will heat a metal hydroxide $M(OH)_2$. You will then identify the metal M.

$$M(OH)_2(s) \rightarrow MO(s) + H_2O(g)$$

FB 1 is the hydroxide of a metal in Group 2 of the Periodic Table, $M(OH)_2$. You are supplied with approximately 2g of **FB 1**.

(a) Method

Experiment 1

- Weigh a crucible with its lid and record the mass.
- Add between 0.5 and 0.7 g of **FB 1** to the crucible. Weigh the crucible with **FB 1** and lid and record the mass.
- Place the crucible on the pipe-clay triangle and remove the lid.
- Heat the crucible and contents strongly for about four minutes.
- Replace the lid and leave the crucible and residue to cool.
- While the crucible is cooling, begin work on a different question.
- Once the crucible is cool, reweigh the crucible and contents with the lid on. Record the mass.
- Calculate and record the mass of FB 1 used and the mass of residue obtained.

Experiment 2

- Repeat the method used in **Experiment 1**, using between 0.8 and 1.0g of **FB 1** in the second crucible.
- Calculate and record the mass of FB 1 used and the mass of residue obtained.

Results

(b) Calculations

 Calculate the mean mass of FB 1 used in your experiments and calculate the mean mass of residue obtained.
 Express both answers to two decimal places.

> mean mass of **FB 1** = g mean mass of residue = g [1]

(ii) Calculate the mean number of moles of water lost during your experiments.

mean moles of H_2O = mol [1]

(iii) Using your answer to (ii) and the equation for the decomposition of **M**(OH)₂, calculate the relative formula mass of the metal oxide, **M**O.

 $M_{\rm r} {\rm of } {\rm MO} =$ [1]

(iv) Calculate the relative atomic mass of M.M is in Group 2 of the Periodic Table. Suggest the identity of M.

A_r of **M** = **M** is[1]

(c) (i) State how you could ensure that the decomposition of $M(OH)_2$ in your experiments was complete.

......[1]

(ii) A student repeated the experiment using **FB 1** contaminated with **M**CO₃.

State and explain what effect this impurity would have on the value of the relative atomic mass of \mathbf{M} that this student would calculate.

[Total: 12]

2 In this experiment you will determine the enthalpy change, ΔH_r , for the decomposition of calcium hydroxide to calcium oxide.

 $Ca(OH)_2(s) \rightarrow CaO(s) + H_2O(I)$

To do this, you will determine the enthalpy changes for the reactions of calcium hydroxide and calcium oxide with hydrochloric acid. Excess acid will be used for both experiments.

You will then use Hess' Law to calculate the enthalpy change for the reaction above.

- **FB 2** is 3.0 mol dm^{-3} hydrochloric acid, HC*l*. **FB 3** is calcium hydroxide, Ca(OH)₂. **FB 4** is calcium oxide, CaO.
- (a) Determination of the enthalpy change for the reaction of calcium hydroxide, **FB 3**, with hydrochloric acid, **FB 2**.

(i) Method

- Support a plastic cup in the 250 cm³ beaker.
- Weigh the container with **FB 3**. Record the mass.
- Use the measuring cylinder to transfer 30 cm³ of **FB 2** into the 100 cm³ beaker.
- Place the beaker on the tripod and gauze and heat **FB 2** gently until its temperature is between 35 °C and 40 °C. Turn off the Bunsen burner.
- Carefully transfer all **FB 2** from the 100 cm³ beaker into the plastic cup.
- Measure and record the temperature of **FB 2** in the plastic cup in the space below.
- Immediately add all the **FB 3** from the container to the **FB 2** in the plastic cup.
- Stir constantly until the maximum temperature is reached.
- Measure and record the maximum temperature.
- Weigh and record the mass of the container with any residual solid.
- Calculate and record the mass of **FB 3** used.
- Calculate and record the temperature rise.

Results

Calculations

(ii) Calculate the energy produced during this reaction. [Assume that 4.2J of heat energy changes the temperature of 1.0 cm^3 of solution by $1.0 \degree$ C.]

energy produced = J [1]

(iii) Calculate the number of moles of calcium hydroxide, FB 3, used in the experiment.

moles of $Ca(OH)_2$ = mol [1]

(iv) Calculate the enthalpy change, in kJ mol⁻¹, for reaction 1 below, ΔH_1 .

 $Ca(OH)_2(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(I)$

 $\Delta H_1 = \dots \qquad \text{kJ mol}^{-1}$ (sign) (value)
[1]

(b) Determination of the enthalpy change for the reaction of calcium oxide, **FB 4**, with hydrochloric acid, **FB 2**.

(i) Method

- Support the second plastic cup in the 250 cm³ beaker.
- Weigh the container with FB 4. Record the mass.
- Use the measuring cylinder to transfer 30 cm³ of **FB 2** into the 100 cm³ beaker.
- Place the beaker on the tripod and gauze and heat FB 2 gently until its temperature is approximately 35°C.
- Carefully transfer all **FB 2** from the 100 cm³ beaker into the plastic cup.
- Measure and record the temperature of **FB 2** in the plastic cup in the space below.
- Immediately add all the **FB 4** from the container to the **FB 2** in the plastic cup.
- Stir constantly until the maximum temperature is reached.
- Measure and record the maximum temperature.
- Weigh and record the mass of the container with any residual solid.
- Calculate and record the mass of **FB 4** used.
- Calculate and record the temperature rise.

Results

[2]

Calculation

(ii) Calculate the enthalpy change, in kJ mol⁻¹, for reaction 2 below, ΔH_2 .

 $CaO(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(I)$

$$\Delta H_2 = \dots kJ \text{ mol}^{-1}$$
(sign) (value) [2]

(c) Use your values for ΔH_1 and ΔH_2 to calculate the enthalpy change for the decomposition of calcium hydroxide, ΔH_r .

Show clearly how you obtained your answer by drawing a Hess' Law energy cycle.

(If you were unable to calculate the enthalpy changes, assume that ΔH_1 is -129 kJ mol⁻¹ and ΔH_2 is -150 kJ mol⁻¹. Note: these are not the correct values.)

 $Ca(OH)_2(s) \rightarrow CaO(s) + H_2O(I)$

	(sign) (value) [2]
(d) (i)	Give a reason why FB 2 was heated before FB 3 or FB 4 were added to it.
	[1]
(ii)	The procedure in (b) was repeated using the same mass of calcium oxide, FB 4 . However, 30 cm^3 of $4.0 \text{ mol dm}^{-3} \text{ HC}l$ was used instead of 30 cm^3 of $3.0 \text{ mol dm}^{-3} \text{ HC}l$.
	How would the temperature rise compare with the one you obtained in the experiment in (b) ?
	Explain your answer.
	[1]
	[Total: 15]

 $\Delta H_{\rm r}$ = kJ mol⁻¹

Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) FB 5, FB 6 and FB 7 are all aqueous solutions.

Each solution contains one cation and one anion. The cation in **FB 6** is listed in the Qualitative Analysis Notes, but the other cations are not. The anions present are chloride, nitrate and sulfate (but not necessarily in that order).

Use a 1 cm depth of each solution in a test-tube for the following tests. Record all your observations in the table.

teet		observations	
test	FB 5	FB 6	FB 7
Add a 2 cm strip of magnesium ribbon.			
Add several drops of aqueous sodium carbonate.			
Add aqueous sodium hydroxide.			
Add several drops of aqueous barium chloride or aqueous barium nitrate.			

40.04		observations	
test	FB 5	FB 6	FB 7
Add a 1 cm depth of FB 5 .			
Add a 1 cm depth of FB 6 .			
Add a 1 cm depth of aqueous potassium iodide.			
			[9]
	our observation of the reaction of the cation of the cation in FB 7 .	on of FB 7 with aqueous pot	assium iodide, suggest the
	e ionic equation for the react state symbols.	tion of magnesium with FB	5.
			[1]
(iii) What ty	pe of reaction takes place v	when FB 6 reacts with sodiu	m carbonate?

(iv) Give the ionic equation for the reaction between FB 6 and FB 7. Include state symbols.

[1] [Total: 13]

9

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reac	tion with
ion	NaOH(aq)	NH ₃ (aq)
aluminium, Al³⁺(aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_
barium, Ba²⁺(aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, Ca²⁺(aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
copper(II), Cu²+(aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), Fe²⁺(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe³⁺(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn²⁺(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ^{2–}	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)
iodide, I⁻(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in $NH_3(aq)$)
nitrate, NO ₃ ⁻(aq)	NH₃ liberated on heating with OH⁻(aq) and A <i>t</i> foil
nitrite, NO₂⁻(aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
sulfate, SO ₄ ²-(aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl_2	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

								Group	dn								
1	2											13	14	15	16	17	18
							-										2
							т										He
				Key			hydrogen 1.0										helium 4.0
ю	4			atomic number		L						5	9	7	8	6	10
:=	Be		ato	atomic symbol	loc							Ш	ပ	z	0	ш	Ne
lithium 6.9	beryllium 9.0		rela	name relative atomic mass	SS							boron 10.8	carbon 12.0	nitrogen 14.0	oxygen 16.0	fluorine 19.0	neon 20.2
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	٩	ა	Cl	Ar
sodium 23.0	magnesium 24.3	ю	4	5	9	7	8	6	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	argon 39.9
19	20		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
¥	Ca	Sc	F	>	ŗ	Mn	Fе	ပိ	ïZ	Cu	Zn	Ga	Ge		Se	Ъ	Ъ
potassium 39.1	calcium 40.1	scandium 45.0	titanium 47.9	vanadium 50.9	chromium 52.0	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50		52	53	54
Rb	S	≻	Zr	ЧN	Mo	Ч	Ru	Rh	Pd	Ag	S	In	Sn	Sb	Ч	п	Xe
rubidium 85.5	strontium 87.6	yttrium 88.9	zirconium 91.2	niobium 92.9	molybdenum 95.9	technetium -	ruthenium 101.1	rhodium 102.9	palladium 106.4	silver 107.9	cadmium 112.4	indium 114.8	tin 118.7	antimony 121.8	tellurium 127.6	iodine 126.9	xenon 131.3
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Η	ца Па	8	Re	Os	Ir	Ъ	Au	Hg	11	Pb	Ξ	Ро	At	Rn
caesium 132.9	barium 137.3		hafnium 178.5	tantalum 180.9	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium I	astatine -	radon -
87	88	89-103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	С		Fl		L<		
francium -	radium -		rutherfordium -	dubnium –	seaborgium -	bohrium I	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -		flerovium -		livermorium -		
		57	58	59	60	61	62	63	64		99	67	68	69	20	71	
lanthanoids	ids	La	Ŭ	ŗ	Nd	Pm	Sm	Бu	Вd		D		ц	Ш	٩Y	Lu	
		lanthanum 138.9	cerium 140.1	praseodymium 140.9	neodymium 144.4	promethium -	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	Iutetium 175.0	
		89	06	91		63	94	95	96		98		100	101	102	103	
actinoids		Ac		Ра	⊃	Np	Pu	Am	Cm	Ŗ	ç	Es	ЕШ	Md	No	Ļ	
		actinium -	thorium 232.0	protactinium 231.0	uranium 238.0	neptunium -	plutonium –	americium -	curium I	berkelium -	californium -	einsteinium -	fermium -	mendelevium -	nobelium -	lawrencium -	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.