Cambridge International AS & A Level

5824876239

CHEMISTRY		9701/22
CENTRE NUMBER	CANDIDATE NUMBER	
CANDIDATE NAME		

Paper 2 AS Level Structured Questions

October/November 2018 1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. A Data Booklet is provided.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 13 printed pages and 3 blank pages.

Answer **all** the questions in the spaces provided.

- 1 The model of the nuclear atom was first proposed by Ernest Rutherford. He developed this model on the basis of results obtained from an experiment using gold metal foil.
 - (a) Complete the table with information for two of the particles in an atom of ¹⁹⁷Au.

particle	relative mass	relative charge	location within atom	total number in an atom of ¹⁹⁷ Au
electron	0.0005	-1		79
neutron			nucleus	

(b) State the type of bonding in gold.

......[1]

- (c) A sample of gold found in the earth consists of only one isotope.
 - (i) Explain what is meant by the term *isotopes*.

.....[2]

(ii) A different sample of gold contains more than one isotope.

Suggest why this different sample of gold has the same **chemical** properties as the sample found in the earth.

......[1]

(d) *Tumbaga* is an alloy of copper and gold. A sample of tumbaga was analysed. The mass spectrum of the sample is shown.

(i) Calculate the percentage abundance of gold, *x*, in the sample of tumbaga.

x =% [1]

(ii) Calculate the relative atomic mass, A_r , of the copper present in this sample. Give your answer to **two** decimal places.

[Total: 11]

- element Al Si Ρ S Na Mg type of bonding metallic covalent covalent formula of oxide P₄O₁₀ SO_2 formula of chloride NaC1 MgCl₂ SCl₂
- 2 The table gives some data for elements in the third period and some of their compounds.

- (a) Complete the table to show the bonding in the elements, and the formulae of their oxides and chlorides. [3]
- **(b)** SCl_2 is formed in the following reaction.

 $S_2Cl_2(I) + Cl_2(g) \rightleftharpoons 2SCl_2(I) \qquad \Delta H = -40.6 \text{ kJ mol}^{-1}$

(i) Complete the 'dot-and-cross' diagram to show the bonding in a molecule of SCl₂. Show outer electrons only.

[1]

(ii) Complete and fully label the reaction pathway diagram for the reaction between S_2Cl_2 and Cl_2 . Include labels for activation energy, E_a , and enthalpy change of the forward reaction, ΔH .

[2]

(c) (i) On the axes, sketch the trend in melting point of the elements Na to S.

(ii) Give three statements to explain your sketch.

(e) SO₂ can be released into the atmosphere when fossil fuels containing sulfur are burnt. State and explain one environmental consequence of the release of SO₂ into the atmosphere. (f) The elements in the third period show a general increase in their first ionisation energies from left to right.

Identify **two** pairs of successive elements in the third period that do **not** agree with this statement. For each pair, explain why the change in ionisation energy does **not** agree with this statement.

Use of the Data Booklet may help you to answer this question.

pair 1	
explanation	
pair 2	
explanation	
	[4]

[Total: 17]

- 3 Trihalomethanes are organic molecules in which three of the hydrogen atoms of methane are replaced by halogen atoms, for example CHF_3 .
 - (a) The equation shows a reaction to produce CHF_{3} .

 $CHI_3(s) + 3AgF(s) \rightarrow CHF_3(g) + 3AgI(s)$

Use the data to calculate the enthalpy change of reaction, ΔH_r , for this formation of CHF₃.

compound	enthalpy change of formation, $\Delta H_{\rm f}/{\rm kJmol^{-1}}$
CHI ₃ (s)	-182.1
CHF₃(g)	-692.9
AgF(s)	-204.6
AgI(s)	-61.8

enthalpy change of reaction, $\Delta H_r = \dots kJ \text{ mol}^{-1}$ [3]

(b) The graph shows the relationship between pV and p at a given temperature for CHF_3 and an ideal gas.

(i) CHF_3 is not an ideal gas.

State three basic assumptions that scientists make about the properties of ideal gases.

1 2 3 [3]

(ii) Explain why CHF_3 deviates from the properties of an ideal gas at pressures greater than 300 atm.

(c) A different trihalomethane, $CHCl_3$, reacts with O_2 to produce carbonyl dichloride. HCl(g) is also released as a product of this reaction.

carbonyl dichloride

- (i) Write an equation for this reaction of $CHCl_3$ with O_2 .
- (ii) The conversion of $CHCl_3$ to carbonyl dichloride can be monitored by infra-red spectroscopy. The infra-red spectrum of carbonyl dichloride is shown.

On the infra-red spectrum of carbonyl dichloride identify with an **X** the absorption that would **not** be present in an infra-red spectrum of $CHCl_3$.

Explain your answer.

[2]

(iii) Suggest another difference between the infra-red spectra of $CHCl_3$ and carbonyl dichloride.

.....[1]

[Total: 12]

4 The diagram shows a reaction sequence starting from ethanal.

(a) (i) Draw the displayed formula of P.

		[1]
(ii)	Name the type of chemical reaction that occurs in reaction 3 .	
		[1]
(iii)	Write an equation to represent reaction 4 .	
	Use [O] to represent the oxidising agent.	
		[1]
(iv)	State the reagents and conditions for reaction 4 .	ניו
(iv)		[4]
		[1]

- (b) Compound **Q** is formed as a mixture of two optical isomers.
 - (i) Explain what is meant by the term optical isomers.

(ii) Draw the two optical isomers of **Q**, showing clearly their three-dimensional structures.

(c) **R** can be used to make a polymer, **W**, in two steps.

Draw one repeat unit of **W**.

[3]

[2]

(d) Compound **Z**, $H_2C=CHCH_3$, is produced from **R**.

Z can be used in a two-step process to produce 2-aminopropane.

(i) In the first step, **Z** reacts with HBr to form two products. The structure of the product depends on which intermediate is formed, intermediate I or intermediate II.

intermediate I

intermediate II

Explain why intermediate I is more likely to form than intermediate II.

(ii) When intermediate I forms, the product of the first step is T.

Complete the diagram to show the mechanism for the conversion of **Z** to **T**. Include all relevant charges, partial charges, curly arrows and lone pairs.

(iii) **T** can then be converted to 2-aminopropane.

2-aminopropane

Name the mechanism for this conversion.

......[1]

(e) (i)	Compound S , CH_3COCO_2H , can be reduced by $LiAlH_4$.
	Complete the equation using structural formulae to represent this reaction. Use [H] to represent the reducing agent.
	CH ₃ COCO ₂ H +
	her reducing agents containing Group 1 metal cations include LiBH ₄ , NaBH ₄ and KBH ₄ . e strength of the reducing agent depends on the size of its cation.
(ii)	Give the electronic configuration of the Na ⁺ cation.
	1s ²
(iii)	Suggest why ionic radius increases down Group 1.
	[1]
	[Total: 20]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.