

#### CHEMISTRY

9701/42 May/June 2019

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE<sup>™</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

#### **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

**GENERIC MARKING PRINCIPLE 3:** 

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

#### GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

#### GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

| Question  | Answer                                                                                                                                                                                                                                                      | Marks |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1(a)(i)   | 3s <sup>2</sup> 3p <sup>6</sup> 3d <sup>9</sup> [1]                                                                                                                                                                                                         | 1     |
| 1(a)(ii)  |                                                                                                                                                                                                                                                             | 1     |
| 1(a)(iii) | M1 energy gap / $\Delta E$ is <b>different</b> (for the ligands) [1]                                                                                                                                                                                        | 2     |
|           | M2 different frequency / wavelength of light absorbed / transmitted / reflected [1]                                                                                                                                                                         |       |
| 1(b)      | M1 (Cu <sup>+</sup> /Ag <sup>+</sup> ) d-shell is full / complete <b>OR</b> d-orbital <b>s</b> are full [1]<br>M2 no electrons can be promoted [1]                                                                                                          | 2     |
| 1(c)(i)   | solubility = √5.0 × 10 <sup>-13</sup> = <b>7.1</b> × <b>10</b> <sup>-7</sup> (mol dm <sup>-3</sup> ) [1] min 2sf                                                                                                                                            | 1     |
| 1(c)(ii)  | M1 (in conc. NH <sub>3</sub> ) [NH <sub>3</sub> ] increases <b>and</b> equilibrium 2 shifts to the right [1]                                                                                                                                                | 2     |
|           | M2 [Ag <sup>+</sup> ] decreases <b>and</b> equilibrium <b>1</b> shifts to the right [1]                                                                                                                                                                     |       |
| 1(c)(iii) | $AgBr + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+ + Br^-[1]$                                                                                                                                                                                                  | 1     |
| 1(c)(iv)  | $K_{eq3} = K_{sp} \times K_{stab} [1] \text{ ALLOW } K_{eq3} = [Ag(NH_3)_2^+][Br-]/[NH_3]^2$                                                                                                                                                                | 1     |
| 1(d)      | The potential difference when a half-cell is connected to a (standard) hydrogen electrode under standard conditions [1] <b>OR</b> the potential difference / voltage / EMF between a hydrogen electrode and another half-cell under standard conditions [1] | 1     |
| 1(e)(i)   | salt bridgevoltmeter / V •Ag•Ag* (or soluble silver salt) •Pt•1 atm. (pressure)•1 mol dm <sup>-3</sup> (and 298 K) •                                                                                                                                        | 4     |
| 1(e)(ii)  | Ag electrode labelled and arrow (in the external circuit moving towards this electrode) [1]                                                                                                                                                                 | 1     |

| Question | Answer                                                                                                                                                               | Marks |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2(a)     | $CO_3^{2-} \rightarrow O^{2-} + CO_2 [1]$                                                                                                                            | 1     |
| 2(b)     | Increases (with increasing atomic number / implied) [1]                                                                                                              | 3     |
|          | cationic radius / ion size increases (down the group) [1]                                                                                                            |       |
|          | less polarisation / distortion of anion/CO $_3^{2-}$ [1]                                                                                                             |       |
| 2(c)     | (Pb <sup>2+</sup> ) 0.120 nm; (Ca <sup>2+</sup> ) 0.099 nm; (Zn <sup>2+</sup> ) 0.075 nm [1]                                                                         | 2     |
|          | (most stable) PbCO <sub>3</sub> > CaCO <sub>3</sub> > ZnCO <sub>3</sub> (least stable) [1] <b>ECF</b> from atomic radii                                              |       |
| 2(d)     | amount of $CO_2 = 125 / 24000 = 5.21 \times 10^{-3} \text{ mol } [1]$                                                                                                | 3     |
|          | CaMg(CO <sub>3</sub> ) <sub>2</sub> :CO <sub>2</sub> 1:2<br>amount of carbonate = $2.60(4) \times 10^{-3}$ mol [1] ECF                                               |       |
|          | mass of carbonate = $184(.4) \times 2.60(4) \times 10^{-3} = 0.480$ g % of CaMg(CO <sub>3</sub> ) <sub>2</sub> = $100 \times 0.480 / 0.642 = $ <b>74.8</b> % [1] ECF |       |

| Question | Answer                                                                                                                     | Marks |
|----------|----------------------------------------------------------------------------------------------------------------------------|-------|
| 3(a)     | any diagram [1]                                                                                                            | 1     |
|          |                                                                                                                            |       |
| 3(b)(i)  | (elements) forming one or more (stable) <b>ions</b> with incomplete / partially filled <b>d</b> orbital(s) / sub-shell [1] | 1     |
| 3(b)(ii) | dative covalent / coordinate [1]                                                                                           | 1     |

| Question |                                                                                                                                           |                               | Answer                            |                                               |                               | Marks |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|-----------------------------------------------|-------------------------------|-------|
| 3(c)     | FeO and +2 $Fe_2O_3$ and +3 all [1] <b>ALLOW</b> $Fe_3O_4$ and +3 and +2                                                                  |                               |                                   |                                               | 1                             |       |
| 3(d)     | metal ion                                                                                                                                 | ligand                        | co-ordination<br>number           | formula of complex<br>ion                     | charge of complex<br>ion      | 2     |
|          | Ni <sup>2+</sup>                                                                                                                          | СО                            | 4                                 | Ni(CO)4                                       | 2+                            |       |
|          | Fe <sup>3+</sup>                                                                                                                          | CN⁻                           | 6                                 | Fe(CN)₀                                       | 3-                            |       |
|          | mark as • ✓ • ✓ [2]                                                                                                                       |                               |                                   |                                               |                               |       |
| 3(e)(i)  | cis-trans isomerism [1]                                                                                                                   | ALLOW geometric(              | al)                               |                                               |                               | 1     |
| 3(e)(ii) |                                                                                                                                           | H <sub>2</sub> O////////      | OH <sub>2</sub> H <sub>2</sub> O  | OH2<br>OH2<br>NH3<br>OH2<br>NH3<br>OH2<br>NH3 |                               |       |
|          | one correct pair [1] two co                                                                                                               | prrect pairs [2]              |                                   |                                               |                               |       |
| 3(f)(i)  | $K_{\text{stab}} = \frac{[\text{Cu}(\text{H}_2\text{O})_4(\text{NH}_3)_2^{2^+}]}{[\text{Cu}(\text{H}_2\text{O})_6^{2^+}][\text{NH}_3]^2}$ | [1] units = dm <sup>6</sup> i | mol <sup>_2</sup> [1] ecf from M1 |                                               |                               | 2     |
| 3(f)(ii) | equilibrium <b>4</b> has a (net) inclusion moles of reactants and prod                                                                    |                               |                                   | moles whereas equilibriu                      | m <b>5</b> has same number of | 1     |

| Question  | Answer                                                                                                                              | Marks |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3(f)(iii) | $[Cu(H_2O)_4(en)]^{2+}$ and (equilibrium) constant / $K_{stab}$ is the largest / highest [1]                                        | 1     |
|           | <b>ALLOW</b> [Cu(H <sub>2</sub> O) <sub>4</sub> ( <i>en</i> )] <sup>2+</sup> and constant / $K_{stab}$ of eqm 4 is greater / higher |       |

| Question |                                                                                                  |                          | Answ                                        | er                   |           |                 | Marks |
|----------|--------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------|----------------------|-----------|-----------------|-------|
| 4(a)     | $\begin{array}{l} CH_3COCH_3=1\\ I_2=0\\ H^+=1\\ overall \ order=2 \end{array}  M^2 \end{array}$ | 1 3 orders [1] M2        | overall order bas                           | ed on their M1 [1]   |           |                 | 2     |
| 4(b)(i)  | k = 5.40 × 10 <sup>-3</sup> / (1.50 × 1<br>k = <b>0.46(452)</b> [1]                              |                          | mol <sup>−1</sup> s <sup>−1</sup> [1] 2sf n | nin                  |           |                 | 2     |
| 4(b)(ii) |                                                                                                  |                          | decreases                                   | no change            | increases |                 | 1     |
|          |                                                                                                  | rate constant            | ✓                                           |                      |           |                 |       |
|          |                                                                                                  | rate of reaction         | ✓                                           |                      |           |                 |       |
|          |                                                                                                  |                          |                                             |                      |           | <b>both</b> [1] |       |
| 4(c)     | draw <b>a tangent</b> at <b>time</b> ,                                                           | <b>t=0</b> [1]           |                                             |                      |           |                 | 2     |
|          | measure the gradient / s                                                                         | lope of the tangent [1]  |                                             |                      |           |                 |       |
| 4(d)     | straight line graph startin                                                                      | ng at 0,0 and showing r  | ate α [CH₃COC⊦                              | l <sub>3</sub> ] [1] |           |                 | 1     |
| 4(e)(i)  | slowest step / reaction (ir                                                                      | the mechanism) [1]       |                                             |                      |           |                 | 1     |
| 4(e)(ii) | $2Ce^{4+} + Tl^{+} \rightarrow Tl^{3+} + 2Ce^{4+}$                                               | e <sup>3+</sup> [1]      |                                             |                      |           |                 | 2     |
|          | catalyst and (used in ste                                                                        | p 1 and) regenerated / r | eformed in step 3                           | 8 / end of the reac  | tion [1]  |                 |       |

| Question |                                                                                                                                                                                                                | Answer                |                    |                                |                 | Marks |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|--------------------------------|-----------------|-------|
| 5(a)     | energy change                                                                                                                                                                                                  | always<br>positive    | always<br>negative | either negative<br>or positive |                 | 1     |
|          | lattice energy                                                                                                                                                                                                 |                       | ~                  |                                |                 |       |
|          | enthalpy of neutralisation                                                                                                                                                                                     |                       | ✓                  |                                |                 |       |
|          |                                                                                                                                                                                                                |                       |                    |                                | <b>both</b> [1] |       |
| 5(b)     | (energy change) when <b>1 mole</b> of solute is dissolved                                                                                                                                                      | in an infinite am     | ount of water to   | form a dilute solution         |                 | 1     |
| 5(c)     | calculation of $\Delta H^{e}_{sol}$ with -251, -1284 and -2035 on<br>calculation of $\Delta H^{e}_{sol}$ with -251, -1284 and -2035 on<br><b>OR</b> calculation of $\Delta H^{e}_{sol}$ with (-251 × 3), -1284 | ly and correct sig    | gns                | igns [2]                       |                 | 3     |
|          | $\Delta H_{sol}^{e} = (3 \times -251) + (-1284) - (-2035) = -2$ (kJ mo                                                                                                                                         | I <sup>−1</sup> ) [3] |                    |                                |                 |       |
| 5(d)     | Ca <sup>2+</sup> have a higher charge / greater charge density [<br><b>stronger</b> electrostatic forces between Br <sup>-</sup> and Ca <sup>2+</sup>                                                          |                       |                    |                                |                 | 2     |
| 5(e)(i)  | $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} [1]$                                                                                                                                                 |                       |                    |                                |                 | 1     |
| 5(e)(ii) | T $\Delta S$ is more positive<br>OR –T $\Delta S$ becomes more negative [1]                                                                                                                                    |                       |                    |                                |                 | 1     |

| Question  | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(a)      | any <b>three</b> points from:<br>• bond angle = 120° <b>and</b> shape is (hexagonal ring) planar / (trigonal) planar<br>• carbons are sp <sup>2</sup> hybridised<br>• contains <u>delocalised electrons</u> in the $\pi$ bonds / system<br>• sp <sup>2</sup> orbitals between C-H / C-C overlap to form $\sigma$ <b>bonds</b><br>• a <b>p</b> orbital from each carbon atom overlap sideways with each other above and below the ring forming $\pi$ bonds<br>ALLOW labelled diagrams for bullets 1–5 | 3     |
| 6(b)(i)   | $HNO_3 + H_2SO_4 \rightarrow HSO_4^- + H_2O + NO_2^+$<br>or $HNO_3 + 2H_2SO_4 \rightarrow 2HSO_4^- + H_3O^+ + NO_2^+ [1]$                                                                                                                                                                                                                                                                                                                                                                            | 1     |
| 6(b)(ii)  | $\begin{array}{c} & \underset{H^{+}}{\overset{CH_{3}}{\longrightarrow}} \\ 1,2-dimethylbenzene \\ first curly arrow to N of NO_{2}^{+} [1] \\ correct intermediate [1] \\ 2nd curly arrow and H^{+} formed / lost [1] \end{array}$                                                                                                                                                                                                                                                                   | 3     |
| 6(b)(iii) | $HSO_4^- + H^+ \rightarrow H_2SO_4 [1]$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |
| 6(b)(iv)  | Sn + conc. HC <i>l</i> (+ heat) [1]<br>reduction [1] <b>IGNORE</b> redox                                                                                                                                                                                                                                                                                                                                                                                                                             | 2     |
| 6(c)(i)   | C <sub>15</sub> H <sub>15</sub> NO <sub>2</sub> [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |
| 6(c)(ii)  | amine and carboxylic acid both [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |

| Question  | Answer                                                                                                                                     | Marks |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(c)(iii) | amount of 2,3-dimethylphenylamine = 5.00 / 121 = 0.0413 mol [1]                                                                            | 2     |
|           | amount of mefenamic acid = 0.0413 mol<br>mass of mefenamic acid = 0.0413 × 241 = <b>9.96 / 9.95</b> g 3sf required [1] ECF                 |       |
| 6(d)      | 3° carbocations are more stable than 2° carbocations [1]                                                                                   | 2     |
|           | due to the methyl group acting as an electron donating group (leading to an increase in electron density on the cation stabilising it) [1] |       |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7(a)(i)  | A= leucine<br>B= glutamic acid <b>both</b> [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     |
| 7(a)(ii) | greater <b>and</b> more soluble in the solvent / mobile phase<br><b>OR</b> greater <b>and</b> form more H-bonds with the solvent [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1     |
| 7(b)(i)  | $H_2NCH_2CO_2H + HCl \rightarrow Cl^+H_3N^+CH_2CO_2H$ [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     |
|          | $H_2NCH_2CO_2H + NaOH \rightarrow H_2NCH_2CO_2-Na^+ + H_2O$ [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 7(b)(ii) | H <sub>3</sub> N <sup>+</sup> CH <sub>2</sub> CO <sub>2</sub> <sup>-</sup> [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2     |
|          | Proton is transferred from the CO <sub>2</sub> H group to the NH <sub>2</sub> group [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 7(c)     | $H_{2}N \xrightarrow{CO_{2}H} \xrightarrow{CO_{2}H} H_{3}C \xrightarrow{CO_{2}H}$ | 1     |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                           | Marks |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7(d)(i)  | NH <sub>3</sub> (in ethanol) heat in a sealed tube [1]                                                                                                                                                                                                                                                                                                                                           | 2     |
|          | nucleophilic substitution [1]                                                                                                                                                                                                                                                                                                                                                                    |       |
| 7(d)(ii) | acidity of $Cl_3CCO_2H > ClCH_2CO_2H > CH_3CO_2H$ [1]                                                                                                                                                                                                                                                                                                                                            | 3     |
|          | any two of:<br><i>Cl</i> is electronegative / electron withdrawing group <b>AND</b> <i>Cl</i> <sub>3</sub> CCO <sub>2</sub> H has more / 3 <i>Cl</i> groups [1]<br>weakens O-H bond <b>so</b> more likely to ionise / dissociate<br><b>OR negative</b> charge on anion is more stabilised<br><b>OR</b> charge / electron density on COO <sup>-</sup> decreases so anion is (more) stabilised [1] |       |
|          | CH <sub>3</sub> is electron donating <b>so</b> O-H bond is stronger so less likely to ionise in CH <sub>3</sub> CO <sub>2</sub> H <b>OR</b><br>CH <sub>3</sub> CO <sub>2</sub> H has no -I group <b>so</b> O-H bond is stronger and less likely to ionise [1]                                                                                                                                    |       |
| 7(e)     | $H_{2}N \xrightarrow{O} CO_{2}H$ $HO \xrightarrow{H_{2}N} \xrightarrow{H_{2}} H \xrightarrow{O} CO_{2}H$ $HO \xrightarrow{H_{2}N} \xrightarrow{H_{2}} H \xrightarrow{H_{2}N} \xrightarrow{H_{2}} CO_{2}H$                                                                                                                                                                                        | 3     |
|          | One mark for each structure. [1] [1] [1]                                                                                                                                                                                                                                                                                                                                                         |       |

| Question | Answer                                                                                                                                             | Marks |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8(a)     | 4-chloro-3,5-dimethylphenol OR 3,5-dimethyl-4-chlorophenol [1]                                                                                     | 1     |
|          | ALLOW 2,6-dimethyl-4-hydroxychlorobenzene and 2-chloro-5-hydroxy-1,3-dimethylbenzene                                                               |       |
| 8(b)(i)  | carbon-13 NMR = 5 peaks [1]                                                                                                                        | 2     |
|          | proton NMR = 3 peaks [1]                                                                                                                           |       |
| 8(b)(ii) | <b>OH</b> proton had disappeared due to proton exchange with D / D <sub>2</sub> O [1]<br><b>ALLOW</b> OH + D <sub>2</sub> O $\rightarrow$ OD + HOD | 1     |

