

Cambridge International AS & A Level

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		9701/22
Paper 2 AS Lev	vel Structured Questions	February/March 2023
		1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

1 The Pauling electronegativity values of elements can be used to predict the chemical properties of compounds.

Use the information in Table 1.1 to answer the following questions.

Table 1.1

element	Н	Li	С	0	S
Pauling electronegativity value	2.1	1.0	2.5	3.5	2.6
first ionisation energy/kJmol ⁻¹	1310	519	1090	1310	1000
second ionisation energy/kJmol ⁻¹		7300	2350	3390	2260

(a) (i) Define electronegativity.

......[1]

.....

(ii) O and S are in Group 16.

Explain the difference in the Pauling electronegativity values of O and S.

.....[2]

(b) (i) LiH is an ionic compound.

Draw a dot-and-cross diagram of LiH.

Include all electrons.

[2]

(c)	(i)	Write an equation that represents the first ionisation energy of H.
		[1]
	(ii)	Explain why there is no information given in Table 1.1 for the second ionisation energy of H.
	(iii)	Give the full electronic configuration of $S^{2+}(g)$.
		[1]
(d)	co	and SQ, are acidic gases
(d)	00,	$_{2}$ and SO $_{2}$ are acidic gases.
	(i)	Write an equation for the reaction of SO_2 with H_2O .
		[1]
	(ii)	Write an equation for the reaction of SO ₂ with NaOH.
		[1]
	(iii)	Construct an equation for the reaction of CO ₂ with Mg(OH) ₂ .

(e) (i) Complete Table 1.2 by placing a tick (✓) to show which of the compounds have molecules with an overall dipole moment.

compound	0=C=O	O=S=O	S=C=S	S=C=O
overall dipole moment				

[2]

(ii) At 150 °C and 103 kPa, all of the compounds listed in Table 1.2 are gases.

Under these conditions, 0.284 g of one of the compounds occupies a volume of 127 cm³.

Use this information to calculate the M_r of the compound. Hence, identify the compound from those given in Table 1.2.

Show your working.

$M_r =$	 identity of compound =
	[3]

[Total: 17]

BLANK PAGE

- **2** The Group 2 elements Mg to Ba are all silvery-white reactive metals.
 - (a) (i) Draw a labelled diagram to show the bonding and structure of the Group 2 metals at room temperature.

	ו	2]
	(ii) Explain why Mg has a higher electrical conductivity than Na.	
	[1]
(b)	Write an equation for the reaction of magnesium with cold water.	
	[1]
(c)	Identify a single reagent that can be used to distinguish separate samples of dilu $Mg(NO_3)_2(aq)$ and dilute $Ba(NO_3)_2(aq)$.	te
	Explain your answer.	
	reagent	
	explanation	
		[2]

- 7
- (d) (i) Describe what is observed when $SrI_2(aq)$ reacts with concentrated sulfuric acid.

.....[2]

(ii) Compound X, an anhydrous Group 2 bromide, is dissolved in water and titrated against aqueous silver nitrate.

A solution containing 0.250 g of **X** requires 33.65 cm^3 of $0.0500 \text{ mol dm}^{-3} \text{ AgNO}_3(aq)$ for complete reaction.

Identify X.

Show your working.

[Total: 11]

3 Alkenes undergo an addition reaction with a 1:1 mixture of CO and H_2 to form aldehydes.

Fig. 3.1 shows the reaction of propene with a 1:1 mixture of CO and H_2 .

Calculate the mass of **A** produced in this reaction when 5.00×10^3 kg of propene is used.

mass of **A** = kg [1]

- (b) A and B show reactions typical of aliphatic aldehydes.
 - (i) A undergoes a nucleophilic addition reaction with a mixture of HCN and KCN, forming compound **C**.

Complete the diagram to show the mechanism for this reaction.

Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

Draw the structure of the organic intermediate.

[4]

(ii) Table 3.1 shows information about three experiments involving **B**.

Complete Table 3.1.

Table	3.1
-------	-----

1solution turns from orange to green2a silver mirror forms on the sides of the reaction vessel3Br ₂ (aq)	experiment	reagents	observation with B
2 the reaction vessel	1		solution turns from orange to green
3 Br ₂ (aq)	2		
	3	Br ₂ (aq)	

[3]

(iii) **B**, C_4H_8O , is oxidised by acidified potassium manganate(VII).

Complete the equation for this reaction. Use [O] to represent one atom of oxygen from the oxidising agent.

(iv) C is a chiral molecule.

Circle any chiral centres in the structure of **C** shown in Fig. 3.2.

[1]

(c) When propene reacts with CO and an excess of H₂, an alkane and a mixture of alcohols are formed instead. The alcohols are isomers of each other.

Suggest the molecular formulae of the alkane and the alcohols that are formed under these conditions.

molecular formula of alkane	
molecular formula of alcohols	
	[2]

(d) The reaction of ethene, C_2H_4 , with a 1:1 mixture of CO and H_2 is shown in equation 1.

equation 1 $C_2H_4(g) + CO(g) + H_2(g) \rightleftharpoons CH_3CH_2CHO(g)$

At atmospheric pressure a cobalt-based catalyst is used in this reaction.

(i) State and explain the effect of using a catalyst on this reaction.

(ii) Explain why the yield of CH₃CH₂CHO(g) increases when the overall pressure of the reaction mixture is increased.

.....[1]

(iii) Use the information in Table 3.2 to calculate the enthalpy change, ΔH_r , of the reaction in equation 1.

equation 1 $C_2H_4(g) + CO(g) + H_2(g) \rightleftharpoons CH_3CH_2CHO(g)$

compound	enthalpy change of formation, $\Delta H_{\rm f}/\rm kJmol^{-1}$
C ₂ H ₄ (g)	+52
CO(g)	-111
CH ₃ CH ₂ CHO(g)	–187

Table 3.

(iv) The reaction mixture is cooled to collect CH_3CH_2CHO as a liquid.

Identify all types of van der Waals' forces that are present between molecules of CH_3CH_2CHO .

[Total: 21]

4 Fig. 4.1 shows some reactions of compound **D**, 2-bromobutane.

Fig. 4.1

(iii) E also forms when F is heated strongly in the presence of an Al₂O₃ catalyst.
Write an equation for this reaction.
[1]

[1]

Fig	. 4.2

Use information from Table 4.1 (on page 14) to identify which of the compounds **D**, **E**, **F**, **G** or **H** produces the infrared spectrum in Fig. 4.2.

Explain your answer.

bond	functional groups containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C–0	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C–H	alkane	2850–2950
N–H	amine, amide	3300–3500
O–H	carboxyl hydroxy	2500–3000 3200–3600

Table 4.1

(ii) In the mass spectrum of D, the relative abundance of the molecular ion peak is 3.4.Predict the relative abundance of the M+2 peak for D.

Explain your answer.

.....[1]

[Total: 11]

Important values, constants and standards

_ <u>, , ,</u>	
molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C mol^{-1}}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m}$ = 22.4 dm ³ mol ⁻¹ at s.t.p. (101 kPa and 273 K) $V_{\rm m}$ = 24.0 dm ³ mol ⁻¹ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} {\rm mol}^2 {\rm dm}^{-6}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

							The Pe	riodic Tal	The Periodic Table of Elements	ments							
								Group	dn								
1	2											13	14	15	16	17	18
	1						-										2
							т										He
				Key			hydrogen 1.0										helium 4.0
ю	4			atomic number		-						5	9	7	8	6	10
:	Be		ato	atomic symbol	bol							В	U	z	0	ш	Ne
lithium 6.9	beryllium 9.0		rels	name relative atomic mass	3SS							boron 10.8	carbon 12.0	nitrogen 14.0	oxygen 16.0	fluorine 19.0	neon 20.2
	12	L										13	14	15	16	17	18
	Mg											Al	Si	٩	S	Cl	Ar
sodium 23.0	magnesium 24.3	ი	4	5	9	7	8	6	10	11	12	aluminium 27.0	silicon 28.1	чd	sulfur 32.1	chlorine 35.5	argon 39.9
	20		22	23	24	25	26	27	28	29	30	31	32		34	35	36
¥	Ca	Sc	F	>	ں د	Mn	Ъe	ပိ	ïZ	Cu	Zn	Ga	Ge		Se	Ŗ	Ъ
potassium 39.1	calcium 40.1	scandium 45.0	titanium 47.9	vanadium 50.9	chromium 52.0	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
37	38	39	40		42	43	44	45	46	47	48	49	50		52	53	52
Rb	ي د	≻	Zr		Mo	Ъ	Ru	RЪ	Pd	Ag	РС	In	Sn	Sb	Тe	п	Xe
rubidium 85.5	strontium 87.6	yttrium 88.9	zirconium 91.2	niobium 92.9	molybdenum t 95.9	technetium -	ruthenium 101.1	rhodium 102.9	palladium 106.4	silver 107.9	cadmium 112.4	indium 114.8	tin 118.7	antimony 121.8	tellurium 127.6	iodine 126.9	xenon 131.3
55	56	57-71	72		74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Ηf	Та	8		Os	Ir	Ę	Au	Hg	11	Pb	Bi	Ро	At	Rn
caesium 132.9	barium 137.3		hafnium 178.5	~	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium I	astatine 	radon -
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
г	Ra	actinoids	Ŗ	Db	Sg	Bh	Нs	Mt	Ds	Rg	С	ЧN	Fl	Mc	L<	Ts	0g
francium -	radium -		rutherfordium 	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -	nihonium –	flerovium -	moscovium -	livermorium -	tennessine -	ogan esson
		57	58	59	60	61		63	64	65	66	67	68	69	70	71	
lanthanoids	s	La	Ce	ŗ	ΡN	Pm		Eu	Ъд	Tb	D	Ч	ц	Tm	γb	Lu	
		lanthanum 138.9	cerium 140.1	praseodymium 140.9	ne	promethium -	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	lutetium 175.0	
		89	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
actinoids		Ac	Th	Ра		ЧN	Pu	Am	CB	ų	Ç	Еs	Е Ц	Md	No	Ļ	
		actinium -	thorium 232.0	protactinium 231.0	uranium 238.0	neptunium -	plutonium –	americium -	curium	berkelium -	californium -	einsteinium -	fermium -	mendelevium -	nobelium -	lawrencium -	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.