

Cambridge International AS & A Level

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
* 7 3	CHEMISTRY		9701/42
4	Paper 4 A Level	Structured Questions	February/March 2023
0 0			2 hours
7 3 4 9 9 8 8 3 1 2	You must answe	er on the question paper.	
N	No additional m	atariala ara naadad	

No additional materials are needed.

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do not write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 100.
- The number of marks for each question or part question is shown in brackets []. •
- The Periodic Table is printed in the question paper. •
- Important values, constants and standards are printed in the question paper.

DC (CE/SG) 311729/4

© UCLES 2023

- 1 (a) The most common zinc mineral contains zinc(II) sulfide, ZnS.
 - (i) Complete the electrons in boxes diagram in Fig. 1.1 to show the electronic configuration of a zinc(II) ion.

[1]

(ii) Complete Fig. 1.2 to show the Born–Haber diagram for the ionic solid ZnS.Include state symbols of relevant species.

Fig. 1.2

[3]

(iii) Describe the trend in the first electron affinity of the Group 16 elements S to Te. Explain your answer. (iv) Explain why the lattice energy, ΔH_{latt} , of ZnO is more exothermic than that of ZnS.[2] (b) Zinc metal can be obtained in a two-step process as shown. $2ZnS(s) + 3O_2(g) \rightarrow 2ZnO(s) + 2SO_2(g)$ step 1 $ZnO(s) + C(s) \rightarrow Zn(l) + CO(g)$ step 2 The reactions are carried out at 800 °C. (i) Predict the sign of the entropy change, ΔS^{\bullet} , of the reaction in **step 1**. Explain your answer. (ii) Use the data in Table 1.1 to calculate ΔS^{\oplus} of the reaction shown in **step 2**.

Table 1.1

chemical	ZnO(s)	C(s)	Zn(l)	CO(g)
S ⁺ /JK ⁻¹ mol ⁻¹	43.7	5.7	50.8	197.7

 $\Delta S^{\Phi} = J K^{-1} mol^{-1} [1]$

(iii) An equation for the direct reduction of ZnS by carbon is shown.

$$2ZnS(s) + C(s) \rightarrow 2Zn(l) + CS_{2}(g) \qquad \Delta H^{\oplus} = +733 \text{ kJ mol}^{-1}$$
$$\Delta S^{\oplus} = +218 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}$$

This reaction is **not** feasible at 800 °C.

Calculate ΔG^{\bullet} for this reaction at 800 °C.

- (c) Zn(NO₃)₂ undergoes thermal decomposition when heated. The reaction is similar to the thermal decomposition of Group 2 nitrates.
 - (i) Construct an equation for the thermal decomposition of $Zn(NO_3)_2$.

......[1]

(ii) The radii of some Group 2 cations and Zn^{2+} are shown in Table 1.2.

Table 1.2

cation	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	Zn ²⁺
radius/pm	65	99	113	135	74

State and explain the trend in thermal stability of the Group 2 nitrates down the group.

.....

.....

......[2]

(iii) Use Table 1.2 to suggest which Group 2 nitrates are **less** thermally stable than zinc nitrate.

......[1]

[Total: 16]

2 Hypophosphorous acid is an inorganic acid.

The conjugate base of hypophosphorous acid is $H_2PO_2^{-}$.

- (a) Give the formula of hypophosphorous acid.
 -[1]
- (b) H₂PO₂⁻ is a strong reducing agent. It can be used to reduce metal cations without the need for electrolysis.

equation 1	HPO ₃ ^{2−} + 2H ₂ O + 2e [−] ⇒ H ₂ PO ₂ [−] + 3OH [−]	<i>E</i> [⊕] = −1.57 V
------------	---	---------------------------------

(i) In an experiment, an alkaline HPO₃^{2–}/H₂PO₂⁻ half-cell is constructed with $[H_2PO_2^{-1}] = 0.050 \text{ mol dm}^{-3}$.

All other ions are at their standard concentration.

Predict how the value of *E* of this half-cell differs from its E° value.

Explain your answer.

(ii) The Cr^{3+}/Cr half-cell has a standard electrode potential of -0.74 V.

An electrochemical cell consists of an alkaline ${\rm HPO}_3^{\rm 2-/}{\rm H_2PO_2^{-}}$ half-cell and a ${\rm Cr^{3+/Cr}}$ half-cell.

Calculate the standard cell potential, E_{cell}^{Θ} .

 E_{cell}^{Φ} = V [1]

(iii) Complete the diagram in Fig. 2.1 to show how the standard electrode potential of the Cr³⁺/Cr half-cell can be measured relative to that of the standard hydrogen electrode.

Identify the chemicals, conditions and relevant pieces of apparatus.

Fig. 2.1

- (iv) Label Fig. 2.1 to show:
 - which is the positive electrode
 - the direction of electron flow in the external circuit.

[1]

[3]

(v) $H_2PO_2^{-}$ reduces Ni²⁺ to Ni in alkaline conditions.

Use equation 1 to construct the ionic equation for this reaction.

equation 1 $HPO_3^{2-} + 2H_2O + 2e^- \rightleftharpoons H_2PO_2^- + 3OH^-$

(c) $H_2PO_2^{-}(aq)$ reacts with OH⁻(aq).

$$H_2PO_2^{-}(aq) + OH^{-}(aq) \rightarrow HPO_3^{2-}(g) + H_2(g)$$

Table 2.1 shows the results of a series of experiments used to investigate the rate of this reaction.

experiment	[H ₂ PO ₂ [–] (aq)] /moldm ^{–3}	[OH⁻(aq)] / mol dm ^{−3}	volume of H_2 produced in 60 s / cm ³
1	0.40	2.00	6.4
2	0.80	2.00	12.8
3	1.20	1.00	4.8

Table 2.1

(i) The volume of H_2 was measured under room conditions.

Use the molar volume of gas, $V_{\rm m}$, and the data from experiment 1 to calculate the rate of reaction in mol dm⁻³ s⁻¹.

rate of reaction = mol dm⁻³ s⁻¹ [1]

(ii) The rate equation was found to be:

rate =
$$k [H_2 PO_2^{-}(aq)] [OH^{-}(aq)]^2$$

Show that the data in Table 2.1 is consistent with the rate equation.

(iii) State the units of the rate constant, *k*, for the reaction.

[1	[1]	
----	-----	--

(iv) The experiment is repeated using a large excess of OH⁻(aq).

Under these conditions, the rate equation is:

rate =
$$k_1 [H_2 PO_2^{-}(aq)]$$

 $k_1 = 8.25 \times 10^{-5} \,\mathrm{s}^{-1}$

Calculate the value of the half-life, t_{\downarrow} , of the reaction.

t₁ = s [1]
(v) Describe how an increase in temperature affects the value of the rate constant, k₁.
[1]
(d) A student suggests that the reaction between H₂PO₂⁻(aq) and OH⁻(aq) might happen more quickly in the presence of a heterogeneous catalyst.
Describe the mode of action of a heterogeneous catalyst.
[2]
[70tal: 17]

9

3 Vanadium is a transition element in Period 4 of the Periodic	Table.
---	--------

(a)	Defi	ne transition element.
		[1]
(b)		adium shows typical chemical properties of transition elements, including variable lation states.
	(i)	State two other typical chemical properties of transition elements.
		1
		2[1]
	(ii)	Explain why transition elements have variable oxidation states.

(c) VO_2^{+} can be reduced to V^{2+} by $C_2O_4^{-2-}$ in acidic conditions.

equation 2 $2VO_2^+ + 3C_2O_4^{2-} + 8H^+ \rightarrow 2V^{2+} + 6CO_2 + 4H_2O_2^{2-}$

(i) In a titration, 25.00 cm³ of 0.0300 mol dm⁻³ VO₂⁺(aq) is added to 10 cm³ of dilute sulfuric acid.

A solution of 0.0400 mol dm⁻³ $C_2O_4^{2-}(aq)$ is then added from a burette until the end-point is reached.

The titration is repeated and concordant results obtained, as shown in Table 3.1.

Table 3.1

	1	2
volume of $C_2O_4^{2-}$ (aq) added/cm ³	28.15	28.10

Show that these results are consistent with the stoichiometry of equation 2.

(ii) An excess of $C_2O_4^{2-}$ reacts with VO_2^+ to form a mixture of two octahedral complex ions. The complex ions are stereoisomers of each other.

Each complex ion contains a V^{2+} cation and three $C_2O_4^{-2-}$ ions.

Complete the diagram to show the three-dimensional structure of **one** of the complex ions.

Include the charge of the complex ion.

Use 0 0 to represent a $C_2O_4^{2-}$ ion.

10

(d) $V^{2+}(aq)$ can be oxidised by $H_2O_2(aq)$.

Table 3.2 gives some relevant data.

	half-equation	E ⁺ /V
1	$H_2O_2(aq) + 2H^+(aq) + 2e^- \rightleftharpoons 2H_2O(I)$	+1.77
2	$VO_2^+(aq) + 2H^+(aq) + e^- \Longrightarrow VO^{2+}(aq) + H_2O(I)$	+1.00
3	$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightleftharpoons V^{3+}(aq) + H_2O(I)$	+0.34
4	$V^{3+}(aq) + e^- \rightleftharpoons V^{2+}(aq)$	-0.26

Table 3.2

(i) Identify the vanadium species that forms when an excess of H₂O₂(aq) reacts with V²⁺(aq) under standard conditions.

Explain your answer with reference to the data in Table 3.2.

(ii) Concentrated acidified H_2O_2 can react with V²⁺ to form red VO_2^{3+} ions. VO_2^{3+} contains vanadium combined with the peroxide anion, O_2^{2-} . Deduce the oxidation state of vanadium in VO_2^{3+} .

......[1]

[Total: 9]

4 Ethylamine and phenylamine are primary amines.

ethylamine

phenylamine

CH₃CH₂NH₂

These two compounds are synthesised by different methods.

- (a) Several methods can be used to form ethylamine.
 - (i) Ethylamine forms when ethanamide, CH_3CONH_2 , is reduced by LiA lH_4 .

Write an equation for this reaction. Use [H] to represent one atom of hydrogen from the reducing agent.

......[1]

(ii) Ethylamine is a product of the reaction of bromoethane with ammonia.

Name the mechanism of this reaction and state the conditions used.

conditions

[2]

(iii) The reaction in (a)(ii) also forms secondary and tertiary amines.

Suggest the identity of a secondary or tertiary amine formed by the reaction in (a)(ii).

......[1]

(b) Ethylamine is a weak base.

State the relative basicities of ammonia, ethylamine and phenylamine.

Explain your answer.

least basic	>
	[4]

(c) Pure phenylamine, $C_6H_5NH_2$, can be prepared from benzene in two steps.

Draw the structure of the intermediate compound.

Suggest reagents and conditions for each step.

.....[3]

(d) Fig. 4.2 shows some reactions of phenylamine.

Fig. 4.2

(i) Draw the structure of W, the organic product of reaction 1.

		[1]
(ii)	State the reagents used in reaction 2.	
		[1]
	nzenediazonium chloride, $C_6H_5N_2Cl$, and X react together in reaction 4 to form Y , an a npound.	3ZO
(iii)	Name X , the organic product of reaction 3.	
		[1]
(iv)	State the necessary conditions for reaction 4 to occur.	
		[1]
(v)	Suggest a use for Y .	
		[1]

(i) Define monodentate ligand.

(ii) $Cu^{2+}(aq)$ reacts with CH_3NH_2 to form $[Cu(CH_3NH_2)_2(H_2O)_4]^{2+}$.

Draw three-dimensional diagrams to show the two geometrical isomers of $[Cu(CH_3NH_2)_2(H_2O)_4]^{2+}$.

[2]

- (iii) State the coordination number of copper in $[Cu(CH_3NH_2)_2(H_2O)_4]^{2+}$.
 -[1]
- (f) $Cd^{2+}(aq)$ ions form tetrahedral complexes with CH_3NH_2 , OH^- and Cl^- ions, as shown in equilibria 1, 2 and 3.

equilibrium 1	$Cd^{2+}(aq) + 4CH_3NH_2(aq) \Longrightarrow [Cd(CH_3NH_2)_4]^{2+}(aq)$	$K_{\rm stab} = 3.3 \times 10^6$
equilibrium 2	$Cd^{2+}(aq) + 4OH^{-}(aq) \Longrightarrow Cd(OH)_4^{2-}(aq)$	$K_{\mathrm{stab}} = 5.0 \times 10^8$
equilibrium 3	$Cd^{2+}(aq) + 4Cl^{-}(aq) \Longrightarrow CdCl_4^{2-}(aq)$	$K_{\mathrm{stab}} = 6.3 \times 10^2$
(i) Give the ur	hits of $K_{\rm stab}$ for equilibrium 1.	

......[1]

(ii) Write an expression for K_{stab} for equilibrium 3.

K_{stab} =

[1]

(iii) A solution of C*l*⁻(aq) is added to Cd²⁺(aq) and allowed to reach equilibrium. The equilibrium concentrations are given.

 $[Cd^{2+}(aq)] = 0.043 \text{ mol dm}^{-3}$ $[Cl^{-}(aq)] = 0.072 \text{ mol dm}^{-3}$

Use your expression in (f)(ii) to calculate the concentration of $CdCl_4^{2-}(aq)$ in the equilibrium mixture.

 $[CdCl_4^{2-}(aq)] = \dots mol dm^{-3}$ [1]

(iv) When $CH_3NH_2(aq)$ is added to $Cd^{2+}(aq)$, a mixture of $[Cd(CH_3NH_2)_4]^{2+}(aq)$ and $[Cd(OH)_4]^{2-}(aq)$ forms.

Suggest how the $[Cd(OH)_4]^{2-}(aq)$ is formed.

(v) $Cd^{2+}(aq)$ exists as a complex ion, $[Cd(H_2O)_6]^{2+}(aq)$.

Identify the most stable and the least stable of the complexes in Table 4.1 by placing **one** tick (\checkmark) in each column.

Explain your answer.

Table 4.1

complex	most stable	least stable
[Cd(H ₂ O) ₆] ²⁺ (aq)		
[Cd(OH) ₄] ^{2–} (aq)		
[Cd(CH ₃ NH ₂) ₄] ²⁺ (aq)		
[CdC <i>l</i> ₄] ^{2–} (aq)		

[Total: 27]

5 Tulobuterol is used in some medicines.

Fig. 5.1

(a) Tulobuterol contains a benzene ring in its structure.

Describe and explain the shape of benzene.

In your answer, include:

- the bond angle between carbon atoms
- the hybridisation of the carbon atoms
- how orbital overlap forms σ and π bonds between the carbon atoms.

(b) In a synthesis of tulobuterol, the first step involves the formation of chlorobenzene. Benzene reacts with Cl₂ in the presence of an AlCl₃ catalyst.

Fig. 5.2

(i) Write an equation to show how Cl_2 reacts with $AlCl_3$ to generate an electrophile.

......[1]

(ii) Complete the mechanism in Fig. 5.3 for the reaction of benzene with the electrophile generated in (b)(i).

Include all relevant curly arrows and charges.

Draw the structure of the intermediate.

Fig. 5.3

[3]

(c) The second step of the synthesis involves the reaction of chlorobenzene with $ClCOCH_2Cl_2$, also in the presence of an $AlCl_3$ catalyst, forming compound **Q**.

(i) Name the mechanism of the reaction in step 2.

......[1]

(ii) Draw the structure of an isomer of **Q** that forms as an organic by-product of the reaction in step 2.

[1]

(iii) The reactants used in step 2 contain acyl chloride, alkyl chloride and aryl chloride functional groups.

State and explain the relative ease of hydrolysis of acyl chlorides, alkyl chlorides and aryl chlorides.

easiest to hydrolyse hardest to hydrolyse

Suggest reagents and conditions for steps 3 and 4.

(d) Tulobuterol is produced from Q as shown in Fig. 5.5.

Draw the structure of ${\boldsymbol{\mathsf{Z}}}$ in the box.

step 3

[3]

- (e) The synthesis produces two enantiomers of tulobuterol.
 - (i) Define enantiomers.

(ii) Suggest **one** disadvantage of producing two enantiomers in this synthesis.

- (iii) Suggest a method of adapting the synthesis to produce a single enantiomer.
-[1]

(f) (i) Predict the number of peaks that would be seen in the carbon-13 NMR spectrum of tulobuterol.

......[1]

(ii) The proton (¹H) NMR spectrum of tulobuterol dissolved in D₂O shows peaks in four different types of proton environment.

The peak for the $-CH_2N$ environment is a doublet in the chemical shift range $\delta = 2.0-3.0$ ppm.

Give details for each of the other **three** peaks in the proton NMR spectrum of tulobuterol, to include:

- chemical shift
- environment of the proton
- splitting pattern
- number of ¹H atoms responsible.

Table 5.1 gives information about typical chemical shift values.

[3]

Table 5	5.1
---------	-----

environment of proton	example	chemical shift range δ/ppm
alkane	-CH ₃ , -CH ₂ -, >CH-	0.9–1.7
alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2–3.0
alkyl next to aromatic ring	CH ₃ −Ar, −CH ₂ −Ar, >CH−Ar	2.3–3.0
alkyl next to electronegative atom	$CH_3-O, -CH_2-O, -CH_2-O, -CH_2-Cl$	3.2–4.0
attached to alkene	=C H R	4.5–6.0
attached to aromatic ring	H–Ar	6.0–9.0
aldehyde	HCOR	9.3–10.5
alcohol	ROH	0.5–6.0
phenol	Ar–O H	4.5–7.0
carboxylic acid	RCOOH	9.0–13.0
alkyl amine	R–N H –	1.0–5.0
aryl amine	Ar–NH ₂	3.0–6.0
amide	RCONHR	5.0–12.0

[Total: 22]

6 A student uses thin-layer chromatography (TLC) to analyse a mixture containing different metal cations. The student repeats the experiment using different solvents.

Fig. 6.1 shows the chromatogram obtained by the student using water as a solvent.

Fig. 6.1

(a) (i) Suggest a compound that could be used as the stationary phase in this experiment.

......[1]

(ii) Table 6.1 shows the $R_{\rm f}$ values for different metal cations when separated by TLC using water as a solvent.

cation	R _f value (water)
Cd ²⁺ (aq)	0.40
Co ²⁺ (aq)	0.77
Cu ²⁺ (aq)	0.32
Fe ³⁺ (aq)	0.12
Hg ²⁺ (aq)	0.23
Ni ²⁺ (aq)	0.75

Table 6.1

Suggest the identity of the cation that causes the spot at **M** in Fig. 6.1.

Explain your answer.

......[1]

(b) The student repeats the experiment using butan-1-ol as a solvent.

The metal cations do **not** travel as far up the TLC plate in this experiment.

Suggest why the metal cations do not move as far up the TLC plate with butan-1-ol as a solvent.

.....[1]

(c) The student sprays the TLC plate in Fig. 6.1 with KSCN(aq).

The colour of some of the spots changes, as some of the metal cations undergo a ligand exchange reaction.

Identify the ligands involved in the ligand exchange reaction.

..... exchanges with

(d) In a third experiment, the pH of the mixture of metal ions is kept constant using a buffer solution.

The student prepares the buffer solution by mixing 20.0 cm^3 of $0.150 \text{ mol dm}^{-3}$ KOH(aq) and 50.0 cm^3 of $0.100 \text{ mol dm}^{-3}$ C₈H₅O₄K(aq).

 $C_8H_5O_4K$ is a weak carboxylic acid that has $pK_a = 5.40$.

Fig. 6.2

(i) Complete the equation for the reaction of $C_8H_5O_4K(aq)$ with KOH(aq).

(ii) Calculate the pH of the buffer solution. Show all your working.

pH =[4]

[Total: 9]

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{ mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \text{C}$
molar volume of gas	$V_{\rm m}$ = 22.4 dm ³ mol ⁻¹ at s.t.p. (101 kPa and 273 K) $V_{\rm m}$ = 24.0 dm ³ mol ⁻¹ at room conditions
ionic product of water	$K_{\rm w}$ = 1.00 × 10 ⁻¹⁴ mol ² dm ⁻⁶ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

							The Per	iodic Ta	The Periodic Table of Elements	ments							
								Group	dnu								
~	2											13	14	15	16	17	18
							-										2
							т										He
				Key			hydrogen 1.0										helium 4.0
e	4			atomic number								5	9	7	8	6	10
:	Be		ato	atomic symbol	loc							Ш	U	z	0	ш	Ne
lithium 6.9	beryllium 9.0		rela	name relative atomic mass	ISS							boron 10.8	carbon 12.0	nitrogen 14.0	oxygen 16.0	fluorine 19.0	neon 20.2
11	12	-										13	14	15	16	17	18
Na	Mg											Ρl	Si	٩	S	Cl	Ar
sodium 23.0	magnesium 24.3	c	4	5	9	7	ø	o	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	argon 39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
\mathbf{x}	Ca	Sc	F	>	ບັ	Mn	Fе	ပိ	Ī	Cu	Zn	Ga	Ge	As	Se	Ŗ	Ъ
potassium 39.1	calcium 40.1	scandium 45.0	titanium 47.9	vanadium 50.9	chromium 52.0	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	ي ا	≻	Zr	ЧN	Мо	Ч	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Ч	Ι	Xe
rubidium o.c. c	strontium o7 c	yttrium oo o	zirconium 01.0	midoin o co	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin 10.7	antimony	tellurium	iodine	xenon
0.00 72	0. 10 AR	57_71	2:10	73	5.00 74	75	76	C.201	1001	01.0	5-1- BO	6	82	83	0.121	85 85	88
° د	ä	lanthanoids	Ξ. Ţ	² r		2 0	č	- L	2 4	<u>م</u> .	3 T	17 17	d d	s <u>a</u>	^t C	∆+	ŝ
Caesium milita			hafninm			rhenium	Semiims miims	iridi m	nlation			thallium	2 700	נייי דייי דייי	Doloni um	astatine	radon
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2		197.0		204.4	207.2	209.0	-		
87	88	89-103	104	105	106	107	108	109		111		113	114	115	116	117	118
Ļ	Ra	actinoids	Ŗ	Db	Sg	Bh	Hs	Mt		Rg	C	ЧZ	Fl	Mc	Ľ	Ъ	og
francium -	radium _		rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	Ę	roentgenium -	ö	nihonium	flerovium -	moscovium	livermorium –	tennessine -	oganesson -
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lanthanoids	sp	La	Ce	P	Nd	Ът	Sm	Еu	рд	Tb	Ŋ	우	ц	Tm	٩Y	Lu	
		lanthanum 138.9	cerium 140.1	praseodymium 140.9	neodymium 144.4	promethium -	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	Iutetium 175.0	
		68	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
actinoids		Ac	Ч	Ра		ЧN	Pu	Am	Cm	Ŗ	ç	Es	Еm	Md	٩	Ļ	
		actinium -	thorium 232.0	protactinium 231.0	uranium 238.0	neptunium -	plutonium –	americium -	curium I	berkelium -	californium –	einsteinium -	fermium -	mendelevium -	nobelium -	lawrencium -	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.