

Cambridge International AS & A Level

	CANDIDATE NAME										
	CENTRE NUMBER							NDIDAT MBER	E		
*	CHEMISTRY 9701/34										
0	Paper 3 Advanc	ed Practical S	kills 2						October/	Novemb	er 2023
										2	2 hours
4171993	You must answe	er on the quest	ion paper.								
*	You will need:	The materials	and appara	itus li	isted in the	confider	tial instru	uctions			
 INSTRUCTIONS Answer all questions. Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. Write your name, centre number and candidate number in the boxes at the top of the page. Write your answer to each question in the space provided. Do not use an erasable pen or correction fluid. Do not write on any bar codes. You may use a calculator. You should show all your working and use appropriate units. 					ge.						
	INFORMATION	J							Se	ssion	
		ark for this pa			r part quest	tion is sh	own in				
	 The number of marks for each question or part question is shown in brackets []. The Periodic Table is printed in the question paper. Important values, constants and standards are printed in the 										
	question pa	aper.			·						
		Notes for use in qualitative analysis are provided in the question paper. For Examiner's Use					Jse				
									1		
									2		
									3		
									Total		

This document has 16 pages. Any blank pages are indicated.

2

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.

Show your working and appropriate significant figures in the answer to **each** step of your calculations.

1 Iron(III) ions, Fe^{3+} , can oxidise iodide ions, I⁻, to iodine, I₂.

$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$$

It is possible to determine the rate of this reaction by measuring the time to produce a certain amount of iodine. To do this, thiosulfate ions, $S_2O_3^{2-}$, are added to the reaction mixture. The thiosulfate ions react immediately with the iodine produced by the reaction and convert it back to iodide ions.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

lodine remains in the solution when all the thiosulfate ions have reacted. The remaining iodine is detected by starch indicator in the reaction mixture, which causes the solution to turn blue-black.

In this experiment you will investigate how the rate of the reaction between iron(III) ions and iodide ions is affected by the concentration of the iron(III) ions.

FB 1 is $0.0500 \text{ mol dm}^{-3}$ acidified iron(III) chloride, FeC l_3 . **FB 2** is $0.0500 \text{ mol dm}^{-3}$ potassium iodide, KI. **FB 3** is $0.00500 \text{ mol dm}^{-3}$ sodium thiosulfate, Na₂S₂O₃. **FB 4** is starch indicator.

(a) Method

Experiment 1

- Fill the burette labelled **FB 1** with **FB 1**.
- Run 20.00 cm^3 of **FB 1** into a 100 cm^3 beaker.
- Use the 25 cm³ measuring cylinder to add the following to the **other** 100 cm³ beaker:
 - 10.0 cm³ of **FB 2**
 - 20.0 cm³ of **FB 3**
 - $10.0 \, \text{cm}^3 \text{ of } \mathbf{FB} \mathbf{4}.$
- Add the contents of the first beaker to the second beaker and start timing **immediately**. Ignore any initial colouration on mixing.
- Stir the mixture once and place the beaker on the white tile.
- Stop timing as soon as the solution turns blue-black.
- Record this reaction time to the nearest second.
- Rinse both beakers and shake dry.
- Rinse and dry the glass rod.

- Fill the other burette with distilled water.
- Run 10.00 cm^3 of **FB 1** into a 100 cm^3 beaker.
- Run 10.00 cm³ of distilled water into the same beaker containing **FB 1**.
- Use the 25 cm³ measuring cylinder to add the following to the **other** 100 cm³ beaker:
 - 10.0 cm³ of **FB 2**
 - 20.0 cm³ of **FB 3**
 - \circ 10.0 cm^3 of FB 4.
- Add the contents of the first beaker to the second beaker and start timing **immediately**. Ignore any initial colouration on mixing.
- Stir the mixture once and place the beaker on a white tile.
- Stop timing as soon as the solution turns blue-black.
- Record this reaction time to the nearest second.
- Rinse both beakers and shake dry.
- Rinse and dry the glass rod.

Experiments 3 to 5

• Carry out three further experiments to investigate how the reaction time changes with different volumes of **FB 1**.

The combined volume of **FB 1** and distilled water must always be 20.00 cm^3 . Do **not** use a volume of **FB 1** that is less than 5.00 cm^3 .

The rate of reaction is given by the following expression.

rate = $\frac{1000}{\text{reaction time in seconds}}$

Use this expression to calculate the rate for each of your experiments.

Record all your results in a single table. You should include the volume of **FB 1**, the volume of distilled water, the reaction time and the rate of reaction.

Results

Ι	
II	
III	
IV	
V	
VI	
VII	
VIII	
IX	

[9]

(b) On the grid opposite, plot the rate (on the *y*-axis) against the volume of **FB 1** (on the *x*-axis). Include the origin in your plot. Label any points that you consider to be anomalous. Draw the line of best fit.

5

(c) In these experiments, the volume of **FB 1** is directly related to the concentration of iron(III) ions.

Using your graph, state what conclusion can be drawn about the relationship between the rate of reaction and the concentration of the iron(III) ions.

-[1]
- (d) A student wants to increase the concentration of the sodium thiosulfate solution while keeping the rest of the experiment the same. The student realises that the amount of thiosulfate ions must not be too high otherwise there will be no remaining iodine.

You will calculate the concentration of thiosulfate ions that will react with all the iodine produced in **Experiment 1**.

(i) Calculate the amount, in mol, of iron(III) ions in the solution at the start of **Experiment 1**.

amount of Fe^{3+} = mol [1]

(ii) Calculate the amount, in mol, of iodide ions in the solution at the start of **Experiment 1**.

amount of I⁻ = mol [1]

(iii) Use the equation to determine the maximum amount, in mol, of iodine that can be made during this reaction.

 $2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$

amount of I_2 = mol [1]

(iv) Use the equation to determine the concentration, in moldm⁻³, of sodium thiosulfate solution that will react with all the iodine produced in Experiment 1.
 Show your working.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

concentration =	 mol dm ⁻³
	[2]

[Total: 19]

7

2 In this experiment you will determine the relative formula mass of an unknown ion, A^{2-} . The ion is present in a salt with the formula Na₂A•5H₂O.

You will first determine the enthalpy change of solution, ΔH_{sol} , for Na₂A•5H₂O. To do this you will measure the temperature change when a known mass of the salt dissolves in a known volume of water. You will then use a literature value for the enthalpy change of solution to calculate the relative formula mass of A²⁻.

FB 5 is the salt, $Na_2A \cdot 5H_2O$.

(a) Method

- Support the cup in the 250 cm³ beaker.
- Rinse the 25 cm³ measuring cylinder with distilled water.
- Use the 25 cm³ measuring cylinder to transfer 20.0 cm³ of distilled water into the cup.
- Weigh the stoppered container with the **FB 5**. Record the mass.
- Measure and record the initial temperature of the water in the cup. You may need to tilt the cup to make sure that the bulb of the thermometer is covered.
- Carefully add all the sample of FB 5 to the water in the cup.
- Stir the mixture and record the minimum temperature that is reached.
- Weigh the stoppered container and any residual **FB 5**. Record the mass.
- Calculate and record the mass of **FB 5** added to the water and the change in temperature.

Ι	
II	
III	
IV	

(b) Calculations

- (i) Calculate the energy change in the reaction.
- energy change = J [1]
- (ii) A literature value for the enthalpy change of solution, ΔH_{sol} , for Na₂A•5H₂O is +47.4 kJ mol⁻¹. Calculate the amount, in mol, of Na₂A•5H₂O in your sample of **FB 5**. Assume that the literature value was measured under the same conditions as your experiment.

amount of $Na_2A \cdot 5H_2O = \dots mol [1]$

(iii) Calculate the relative formula mass of A^{2-} .

(c) A student suggests that the experiment can be made more accurate by increasing the volume of water used.

State whether the student is correct. Explain your answer.

......[1]

[Total: 8]

Qualitative analysis

For each test you should record all your observations in the spaces provided.

Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.

Where no change is observed, you should write 'no change'.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests should be attempted.

3 FB 6 is a salt which contains a cation and an anion from those listed in the Qualitative analysis notes.

FB 7 is a mixture of two acids. The possible acids are hydrochloric acid, nitric acid and sulfuric acid.

By carrying out the following tests you will identify the ions in **FB 6** and determine which acids are present in **FB 7**.

(a) Carry out the following tests and record your observations in Table 3.1.

Та	b	le	3.	1
	~		•	

test	observations
Test 1 Place approximately one third of the sample of FB 6 in a hard-glass test-tube and heat strongly, then	
leave to cool.	
Test 2 To an approximately 2 cm depth of FB 7 in a boiling tube add carefully the remaining sample of FB 6. Keep this solution for use in 3(b).	

	(ii)	State the formulae of the ions present in FB 6 .
		FB 6 contains and [1]
(c)	(i)	Choose reagents and carry out tests to identify which of the following acids are present in FB 7 . Use a 1 cm^3 depth of FB 7 for each test. Record your observations.
		test for hydrochloric acid
		observations
		test for nitric acid
		observations
		test for sulfuric acid
		observations
		[4]
	(ii)	State the formulae of the acids present in FB 7 .
		FB 7 contains and [1]
	(iii)	Give an ionic equation for any of the reactions you observed in (c)(i). Include state symbols.
		[1]
		[Total: 13]

[2]

Qualitative analysis notes

1 Reactions of cations

cation	reaction with			
	NaOH(aq)	NH ₃ (aq)		
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess		
ammonium, NH ₄ +(aq)	no ppt. ammonia produced on warming	_		
barium, Ba ²⁺ (aq)	faint white ppt. is observed unless [Ba ²⁺ (aq)] is very low	no ppt.		
calcium, Ca ²⁺ (aq)	white ppt. unless [Ca ²⁺ (aq)] is very low	no ppt.		
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess		
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution		
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess		
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess		
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess		
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess		
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess		

2 Reactions of anions

anion	reaction
carbonate, CO ₃ ^{2–}	CO ₂ liberated by dilute acids
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br [_] (aq)	gives cream/off-white ppt. with $Ag^+(aq)$ (partially soluble in $NH_3(aq)$)
iodide, I [_] (aq)	gives pale yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ [–] (aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with OH ⁻ (aq) and A <i>l</i> foil; decolourises acidified aqueous KMnO ₄
sulfate, SO ₄ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids); gives white ppt. with high [Ca ²⁺ (aq)]
sulfite, SO ₃ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO ₄
thiosulfate, S ₂ O ₃ ^{2–} (aq)	gives off-white/pale yellow ppt. slowly with H ⁺

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

4 Tests for elements

element	test and test result
iodine, I ₂	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$		
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C mol^{-1}}$		
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$		
electronic charge	$e = -1.60 \times 10^{-19} C$		
molar volume of gas	$V_{\rm m}$ = 22.4 dm ³ mol ⁻¹ s.t.p. (101 kPa and 273 K) $V_{\rm m}$ = 24.0 dm ³ mol ⁻¹ at room conditions		
ionic product of water	$K_{\rm w}$ = 1.00 × 10 ⁻¹⁴ mol ² dm ⁻⁶ (at 298K (25 °C))		
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$		

							The Pe	riodic Ta	The Periodic Table of Elements	ments							
								Grc	Group								
~	2											13	14	15	16	17	18
-							-										2
							т										He
				Key			hydrogen 1.0										helium 4.0
e	4			atomic number		-						5	9	7	8	6	10
:-	Be		ato	atomic symbol	bol							ш	U	z	0	ш	Ne
	beryllium 9.0		rels	name relative atomic mass	ISS							boron 10.8	carbon 12.0	nitrogen 14.0	oxygen 16.0	fluorine 19.0	neon 20.2
	12											13	14	15	16	17	18
	Mg											Al	N:	٩	თ	Cl	Ar
23.0	magnesium 24.3	ო	4	5	9	7	8	6	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	argon 39.9
	20		22	23		25	26	27	28	29	30	31	32	33	34	35	36
¥	Ca	Sc	F	>		Mn	Ъe	ပိ	ïZ	Cu	Zn	Ga	Ge	As	Se	Ŗ	Кr
potassium 39.1	calcium 40.1	scandium 45.0	titanium 47.9	vanadium 50.9	ε	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
37	38	39	40	41		43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	≻	Zr	qN	Mo	Ч	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
rubidium 85.5	strontium 87.6	yttrium 88.9	zirconium 91.2	niobium 9.2.9	molybdenum 95.9	technetium -	ruthenium 101 1	rhodium 102.9	palladium 106 4	silver 107 9	cadmium 112 4	indium 114.8	tin 118.7	antimony 121 R	tellurium 127 6	iodine 126.9	xenon 131.3
55	56	57-71	72	73	74	75	76	17	78	62	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Ηf	Ца	×	Re	Os	Ir	Ŧ	Au	Hg	Τl	Pb	Bi	Ро	At	Rn
caesium 132.9	barium 137.3		hafnium 178.5	tantalum 180.9	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium –	astatine -	radon -
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
ч	Ra	actinoids	Rf	Db	Sg	Bh	Нs	Mt	Ds	Rg	C	ЧN	Γl	Mc	2	Ts	Og
francium -	radium -		rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium –	roentgenium -	copernicium -	nihonium –	flerovium -	moscovium	livermorium –	tennessine -	oganesson -
	L	6.7	0 U	U U	Cu	2		63	54	ВE	99	67	02	03	02	71	
		5 _	ŝ	3 b	NA NA	5 6		3 1	t C	3 F	ŝ	Ē	3 L	3 6 H	2 5		
Ianunanon		a L	ט כ	Ē		Ē		D L	5		בֿא		Ī				
		lanthanum 138.9	cerium 140.1	praseodymium 140.9	neodymium 144.4	promethium -	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	Iutetium 175.0	
		89	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
actinoids		Ac	Th	Ра		dN	Pu	Am	СЗ	¥	ç	Еs	Е	Мd	No	Ļ	
		actinium -	thorium 232.0	protactinium 231.0	uranium 238.0	neptunium -	plutonium -	americium -	curium	berkelium -	californium –	einsteinium –	fermium -	mendelevium -	nobelium -	lawrencium -	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.