

Cambridge International AS & A Level

Maximum Mark: 100

CHEMISTRY 9701/42
Paper 4 A Level Structured Questions February/March 2024
MARK SCHEME

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alon gside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond
 the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 'List rule' quidance

For questions that require *n* responses (e.g. State **two** reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked *ignore* in the mark scheme should not count towards *n*.
- Incorrect responses should not be awarded credit but will still count towards n.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should not be
 awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this
 should be treated as a single incorrect response.
- Non-contradictory responses after the first *n* responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
1(a)(i)	(enthalpy change when) one mole of a substance / solute AND dissolves in water / turns into an aqueous solution (to form a solution of infinite dilution)	1
1(a)(ii)	there is a (large) increase in entropy $\mathbf{OR}\ \Delta \mathbf{S}$ is positive $\mathbf{OR}\ T\Delta \mathbf{S}$ is positive	1
	so ΔG is negative / $T\Delta S$ outweighs ΔH	1
1(b)(i)	anionic charge density decreases (down the group / Cl- to I-)	1
	(so hydration enthalpies become less negative / less exothermic because) less attraction of ion to water / the dipole–ion force weakens	1
1(b)(ii)	the difference between $\Delta H_{\rm latt}$ and $\Delta H_{\rm hyd}$ remains roughly constant OR $\Delta H_{\rm latt}$ and $\Delta H_{\rm hyd}$ become less exothermic by a similar amount	1
1(b)(iii)	$\Delta H_{\text{hyd}}(K^+(g)) = -629 + 21.0 - (-293) = -315 \text{ kJ mol}^{-1}$	1
1(b)(iv)	solubility of PbI ₂ = $7.1 \times 10^{-9} = x \cdot (2x)^2$ $\therefore x = \sqrt[3]{(1/4 \times 7.1 \times 10^{-9})}$	1
	solubility of PbI ₂ = 1.21×10^{-3} mol dm ⁻³ min 2sf	1
1(b)(v)	 Pb²+ has a greater charge Pb²+ is smaller (than K+) OR (Pb²+) smaller ionic radius greater attraction between Pb²+ and I⁻ OR ionic bond between Pb²+ and I⁻ is stronger OR lattice energy is more exothermic / more negative mark as • ✓ ✓ 	2
1(c)(i)	$\Delta S = 2(155.5) + 2(116.1) - 4(106.3) - 2(213.6) - 205.2$	1
	$\Delta S = -514.4 \text{ (J K}^{-1} \text{ mol}^{-1}) \text{ min 3sf } \mathbf{ECF}$	1

Question	Answer	Marks
1(c)(ii)	$\Delta G = \Delta H - T\Delta S$ AND use of 298 K for T OR clear working to represent this	1
	$\Delta G = -203.4 - 298(-514.4 / 1000)$ $\Delta G = -50.1$ OR -50.2 (kJ mol ⁻¹) OR $\Delta G = -50108.8$ J min 3sf ECF from (c)(i) (negative so spontaneous)	1
1(c)(iii)	increases (in thermal stability down the group) AND (cat)ionic radius / ion size increases (down the group)	1
	less polarisation of anion / C—O bond / distortion of carbonate ion / CO ₃ ²⁻ OR C–O is less weakened / stronger (down the group)	1
1(d)(i)	2H+(aq) + 2e ⁻ → H₂(g) state symbols required	1
1(d)(ii)	M1 moles of S ₂ O ₃ ²⁻ = $\frac{21.35}{1000}$ × 0.100 = 2.135 × 10 ⁻³	1
	M2 calc of Q = $2.135 \times 10^{-3} \times 0.5 \times 2 \times 96500 = 206.02 / 205.68$ ECF	1
	M3 = answer I = 206 / (8 × 60) = 0.428 OR 0.429 A min 2sf ECF	1
1(e)(i)	reaction 1 concentrated HNO ₃ AND concentrated H ₂ SO ₄ (concentrated seen once)	1
	reaction 2 Sn AND (concentrated) HC <i>l</i>	1
1(e)(ii)	step 1 NaNO ₂ + HC $l \rightarrow \text{HNO}_2 + \text{NaC}l$	1
	step 2 $C_6H_5NH_2 + HNO_2 + H^+ \rightarrow C_6H_5N_2^+ + 2H_2O$	1
1(e)(iii)	nucleophilic (aromatic) substitution	1

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
2(a)(i)	 conjugate base of acid I = OH⁻ acid II = HNO₂ conjugate base of acid II = NO₂⁻ 	1
2(a)(ii)	lone pair on the N can be donated to a proton /H+ OR lone pair on the N can accept / gain a proton /H+ OR lone pair on the N can form a dative bond to a proton/H+	1
2(a)(iii)	$H_2O + CH_3COOH \rightarrow H_3O^+ + CH_3COO^-$	1
2(b)(i)	$(K_{W}) = [H^{+}][OH^{-}]$ ALLOW $(K_{W}) = K_{A} \times K_{D}$	1
2(b)(ii)	endothermic AND equilibrium position moves right OR as water dissociates more OR $K_{\!\scriptscriptstyle W}$ increases with temperature	1
2(b)(iii)	M1 (K_w increases with temperature so) pH of neutral solution decreases OR (from graph) $K_w = 1.50 \times 10^{-14} = [H^+]^2$ \therefore neutral pH = $-\frac{1}{2}$ log (1.50×10^{-14}) = 6.91 OR [H ⁺] = $10^{-7.00}$ \therefore [OH ⁻] = $1.50 \times 10^{-14} / 10^{-7.00} = 1.50 \times 10^{-7}$	1
	M2 pH 7 is therefore above neutral pH / is alkaline OR [OH-] > [H+] (so alkaline)	1
2(c)(i)	$H_2O(\it{l})$ particles / molecules has more randomness / disorder OR $H_2O(\it{l})$ has more ways to arrange particles / energy (than in solid)	1
2(c)(ii)	H ₂ O(g) particles / molecules has much more randomness / disorder OR H ₂ O(g) has many more ways to arrange particles / energy (than in liquid)	1
2(c)(iii)	+6030 / (70.1 – 48.0) = 272.85 / 272.9 / 273 K (which is 0 °C)	1
2(d)(i)	(+)1.62 V	1

Question	Answer	Marks
2(d)(ii)	$[OH^-] = 10^{-14}/10^{-11} = 1 \times 10^{-3}$	1
	$E = +0.40 - \frac{1}{2} \times 0.059 \times \log (10^{-3})^2 = +0.40 - 0.059(-3) = +0.577 \text{ (V)} \text{ min 2sf}$	1

Question	Answer	Marks
3(a)(i)	energies / energy levels of the 3d and the 4s (sub-shells / orbitals) are similar OR the difference between the 3d and the 4s is small	1
3(a)(ii)	Fe = [Ar] $3d^6 4s^2$ AND Fe ³⁺ = [Ar] $3d^5$	1
3(b)(i)	(a molecule or ion formed by a central) metal atom / ion surrounded / bonded by one or more ligands	1
3(b)(ii)	6 / six	1
3(b)(iii)	bond angle 106–108° AND lone pair from O is donated (in a bond) OR one more of O's electron pairs is now a bond/bonding pair (so repels less)	1
3(b)(iv)	M1 (degenerate) d orbitals split (into two energy levels) OR (degenerate) d orbitals become non-degenerate	1
	M2 as an electron moves up / to a higher energy level	1
	M3 absorption of light energy / energy in the visible region AND colour seen is complementary (to colour absorbed)	1
3(b)(v)	(d–d) energy gap / $\Delta E/\Delta_{ m oct}$ is different	1
	different frequency / wavelength (of light) absorbed / transmitted / reflected	1
3(c)(i)	$[Fe(H_2O)_6]^{3+} + H_3PO_4 \rightarrow [Fe(H_2O)_5(H_2PO_4)]^{2+} + H_3O^+$	1

Question	Answer	Marks
3(c)(ii)	$K_{\text{Stab}} = \frac{[[\text{Fe}(\text{H}_2\text{O})_5(\text{SCN})]^{2+}]}{[[\text{Fe}(\text{H}_2\text{O})_6]^{3+}][\text{SCN}^-]}$	1
	$mol^{-1} dm^3 u/c$	1
3(c)(iii)	$1.30 \times 10^2 / 59.0$ = 2.2 (03) min 2sf	1

Question	Answer	Marks
4(a)(i)	X [Ru(H ₂ O) ₅ C <i>l</i>] ²⁺	1
	Y [Ru(H ₂ O) ₄ C _{<i>l</i>2]⁺ ECF [1] if reversed}	1
4(a)(ii)	$\begin{bmatrix} N & N & N \\ N & N & N \end{bmatrix}^{3\Theta} \begin{bmatrix} N & N & N \\ N & N & N \end{bmatrix}^{3\Theta}$	2
4(b)(i)	(pyrazine has) a lone pair on each N (atoms) / two lone pairs (on the N's) AND which can be donated / form a coordinate / dative bond (with Ru)	1
4(b)(ii)	shape is (hexagonal ring) planar / (trigonal) planar / 120°	2
	• carbons and nitrogens are sp² hybridised	
	• a p orbital (from each atom) overlaps sideways/laterally (with each other above and below the ring forming π bonds)	
	mark as • ✓ ✓	

Question	Answer	Marks
4(b)(iii)	1/one	1
	all the carbon atoms are equivalent / in same environment OR pyrazine is a symmetrical molecule u/c	1
4(b)(iv)	+2/2+ AND +3/3+ OR +4/4+ AND +1/1+	1
4(c)(i)	SOC & OR PC & OR PC &	1
4(c)(ii)		
	M1 correct ester linkage in the middle of the polymer (displayed C=O bond attached to benzene ring)	1
ı	M2 rest of structure	1

Question	Answer	Marks
5(a)(i)	$AlCl_3 + CH_3Cl \rightarrow AlCl_4 + CH_3 +$	1

Question	Answer	Marks
5(a)(ii)	Cl CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH	1
	curly arrow from inside hexagon to electrophile (CH ₃ +)	
	intermediate	1
	curly arrow from C—H bond into the hexagon AND H+ formed	1
5(a)(iii)	$C_6H_4(C_l)CH_3 + 2[O] \rightarrow C_6H_4(C_l)CHO + H_2O$	1
5(a)(iv)	step 3 HCN AND KCN (cat) OR KCN AND H ₂ SO ₄ /HC <i>l</i>	1
	step 4 H ₂ SO ₄ (aq) OR HC <i>l</i> (aq)	1
5(a)(v)	addition-elimination / condensation	1
5(a)(vi)	(a strong base) it would hydrolyse the ester	1
5(a)(vii)	(a substance able to) rotate the plane of plane-polarised light	1
5(a)(viii)	 any two of: reduced / different biological activity of 'other' enantiomer ORA avoids need to separate the optical isomers to form the pure active isomer lower dosage required OR (drug is) more potent higher yield (of biologically-active molecule) no/less (harmful) side effects OR other isomer can have side effects 	2
5(b)(i)	M1 [HA] = $(75 \times 10^{-3} / 180) \div 0.100 = 4.17 \times 10^{-3}$ OR $1 / 240$ (mol dm ⁻³)	1
	M2 [H+] = $(K_a \times [HA])^{\frac{1}{2}}$ = $(10^{-3.49} \times 4.17 \times 10^{-3})^{\frac{1}{2}}$ = 1.16×10^{-3} (mol dm ⁻³)	1
	M3 pH = -log [H+] = 2.93 to 2.94 min 2sf	1

Question	Answer	Marks
5(b)(ii)	OH /	1
	CH ₃ COOH	1

Question	Answer	Marks
6(a)(i)	pH at which a molecule has no overall charge / is neutral/ is a Zwitterion / charges cancel out	1
6(a)(ii)	H ₃ N COOH	1
6(b)(i)	ethanol AND heat in a sealed tube OR ethanol AND high pressure	1
6(b)(ii)	C ₆ H ₅ COC ₁ / benzoyl chloride / benzoyl anhydride	1
6(b)(iii)	carboxylic acid to primary alcohol COOH to CH₂OH amide to amine CONH to CH₂NH rest of the molecule is correct (carbons and benzene ring) mark as • ✓ ✓	2

Question	Answer								Marks
6(b)(iv)	HOOC	NH ₂		H ₂ N	O H	соон			2
6(c)(i)	M1 nitrogen lone pair in amides is delocalised with C=O								1
	M2 lone pair less ava			H+				1	
6(c)(ii)	chloroethanoic acid is a stronger acid (than ethanoic acid)								1
	because electron-withdrawing ($-I$ / inductive) effect of C l substituent AND weakens O—H / carboxylate anion stabilised							1	
6(d)(i)		proton	а	b	С	d	е		4
		δ	9.0–13.0	6.0–9.0	2.3–3.0	3.2-4.0	1.0–5.0		
		splitting	singlet	multiplet	triplet	triplet	singlet		
	any three [1] any five [2] any seven [3] all nine [4]								
6(d)(ii)		proton	а	b	С	d	е		1
		present in D ₂ O		✓	✓	✓			