

# Cambridge International AS & A Level

|             | CANDIDATE<br>NAME |                        |                     |   |
|-------------|-------------------|------------------------|---------------------|---|
|             | CENTRE<br>NUMBER  |                        | CANDIDATE<br>NUMBER |   |
| *<br>0<br>N | CHEMISTRY         |                        | 9701/4/             | 2 |
| α<br>-      | Paper 4 A Level S | Structured Questions   | February/March 202  | 4 |
| ω<br>ω      |                   |                        | 2 hour              | s |
| 9281939058  | You must answer   | on the question paper. |                     |   |
| 00          | No additional mat | erials are needed      |                     |   |

No additional materials are needed.

#### **INSTRUCTIONS**

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do not write on any bar codes. •
- You may use a calculator. •
- You should show all your working and use appropriate units.

#### **INFORMATION**

- The total mark for this paper is 100.
- The number of marks for each question or part question is shown in brackets []. •
- The Periodic Table is printed in the question paper. •
- Important values, constants and standards are printed in the question paper.

- 1 Potassium iodide, KI, is used as a reagent in both inorganic and organic chemistry.
  - (a) KI forms an ionic lattice that is soluble in water.
    - (i) Define enthalpy change of solution, ΔH<sub>sol</sub>.
      [1]
      (ii) KI(s) has a high solubility in water although its enthalpy change of solution is endothermic.
      Explain how this high solubility is possible.
      [2]
  - (b) Table 1.1 gives some data about the halide ions,  $Cl^-$ ,  $Br^-$  and  $I^-$ , and their potassium salts.

| Та  | bl | е | 1 | 1 |
|-----|----|---|---|---|
| I G |    | 0 |   |   |

| halide ion      | enthalpy change of hydration,<br>∆H <sub>hyd</sub> /kJ mol <sup>–1</sup> | lattice energy of potassium halide,<br>$\Delta H_{\text{latt}}/\text{kJ}  \text{mol}^{-1}$ |
|-----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| C <i>t</i> −    | -364                                                                     | -701                                                                                       |
| Br <sup>_</sup> | -335                                                                     | -670                                                                                       |
| I-              | -293                                                                     | -629                                                                                       |

(i) Explain the trend in the enthalpy change of hydration of the halide ions.

(ii) The  $\Delta H_{sol}$  values of these potassium halides are almost constant. Use the  $\Delta H_{hyd}$  and  $\Delta H_{latt}$  data in Table 1.1 to suggest why. (iii) The enthalpy change of solution of KI(s) is +21.0 kJ mol<sup>-1</sup>.

Use this information and the data in Table 1.1 to calculate the enthalpy change of hydration of the potassium ion,  $K^+(g)$ .

 $\Delta H_{hvd}$  of K^+(g) = .....kJ mol^{-1} [1]

(iv) Solid  $PbI_2$  forms when KI(aq) is mixed with  $Pb^{2+}(aq)$  ions. The solubility product,  $K_{sp}$ , of  $PbI_2$  is  $7.1 \times 10^{-9} \text{ mol}^3 \text{ dm}^{-9}$  at 25 °C. Calculate the solubility, in mol dm<sup>-3</sup>, of  $PbI_2(s)$ .

solubility of  $PbI_2(s) = \dots mol dm^{-3}$  [2]

(v) The ionic radius of  $Pb^{2+}$  is 0.120 nm compared to 0.133 nm for K<sup>+</sup>.

Suggest how the  $\Delta H_{latt}^{\Phi}$  of PbI<sub>2</sub>(s) differs from  $\Delta H_{latt}^{\Phi}$  of KI(s).

Explain your answer.

......[2]

(c) KI slowly oxidises in air, forming  $I_2$ .

reaction 1  $4KI(s) + 2CO_2(g) + O_2(g) \rightarrow 2K_2CO_3(s) + 2I_2(s)$   $\Delta H^{\Phi} = -203.4 \text{ kJ mol}^{-1}$ 

Table 1.2 shows some data relevant to this question.

| substance                          | standard entropy,<br>S <sup>↔</sup> / J K <sup>−1</sup> mol <sup>−1</sup> |
|------------------------------------|---------------------------------------------------------------------------|
| CO <sub>2</sub> (g)                | 213.6                                                                     |
| I <sub>2</sub> (s)                 | 116.1                                                                     |
| K <sub>2</sub> CO <sub>3</sub> (s) | 155.5                                                                     |
| KI(s)                              | 106.3                                                                     |
| O <sub>2</sub> (g)                 | 205.2                                                                     |

| Table | 1.2 |
|-------|-----|
|-------|-----|

(i) Calculate the standard entropy change,  $\Delta S^{\circ}$ , of reaction 1.

 $\Delta S^{\oplus}$  = ...... JK<sup>-1</sup>mol<sup>-1</sup> [2]

(ii) Use your answer to (c)(i) to show that reaction 1 is spontaneous at 298K.

[2]

(iii) The Group 1 carbonates are much more thermally stable than the Group 2 carbonates.State and explain the trend in the thermal stability of the Group 2 carbonates.

 (d) A student electrolyses a solution of KI(aq) for 8 minutes using a direct current.

The half-equation for the reaction that occurs at the anode is given.

$$2I^{-}(aq) \rightarrow I_{2}(aq) + 2e^{-}$$

(i) Write a half-equation for the reaction that occurs at the cathode.

Include state symbols.

......[1]

(ii) After the electrolysis, the  $I_2(aq)$  produced requires  $21.35 \text{ cm}^3$  of  $0.100 \text{ mol dm}^{-3}$  Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>(aq) to react completely.

 $I_2(aq) + 2Na_2S_2O_3(aq) \rightarrow 2NaI(aq) + Na_2S_4O_6(aq)$ 

Calculate the average current used in 8 minutes during the electrolysis.

current = ......A [3]

© UCLES 2024

(e) KI is used as a source of  $I^-$  ions in organic synthesis.

One example of this is shown in the synthetic route in Fig. 1.1.



Fig. 1.1

(i) Identify the reagents required for steps 1 and 2.
 step 1 .....
 step 2 .....<[2]</li>

(ii) Step 3 occurs in two stages.

|       | stage I               | ${\rm NaNO}_2$ and ${\rm HC}{\it l}$ undergo an acid–base reaction to produce ${\rm HNO}_2.$ |             |
|-------|-----------------------|----------------------------------------------------------------------------------------------|-------------|
|       | stage II              | $HNO_2$ reacts with <b>C</b> , $C_6H_5NH_2$ , to produce <b>D</b> , $C_6H_5N_2^+$ .          |             |
|       | Complet               | e the equations for stage I and for stage II.                                                |             |
|       | stage I               | $NaNO_2 + HCl \rightarrow$                                                                   |             |
|       | stage II              |                                                                                              |             |
|       |                       |                                                                                              | [2]         |
| (iii) | The I <sup>-</sup> fr | om KI reacts with <b>D</b> in step 4. The mechanism is shown in Fig. 1.1.                    |             |
|       | Suggest               | the name for this mechanism.                                                                 |             |
|       |                       |                                                                                              | [1]         |
|       |                       |                                                                                              | [Total: 26] |

- 2 Water is an amphoteric compound that also acts as a good solvent of polar and ionic compounds.
  - (a) Equation 1 shows water acting as a Brønsted–Lowry acid.

equation 1  $H_2O + NO_2^- \rightleftharpoons HNO_2 + OH^-$ 

(i) Identify the two conjugate acid-base pairs in equation 1.



$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$$

Fig. 2.1 shows how  $K_{\rm w}$  varies with temperature.





(i) Write an expression for  $K_{w}$ .

(ii) Use information from Fig. 2.1 to deduce whether the dissociation of water is an exothermic or an endothermic process.

Explain your answer.

(iii) An aqueous solution has pH = 7.00 at 30 °C.
 Use information from Fig. 2.1 to explain why this solution can be considered to be alkaline at 30 °C.

 (c) The three physical states of  $H_2O$  have different standard entropies,  $S^{\circ}$ , associated with them. Table 2.1 shows these  $S^{\circ}$  values.

| state of H <sub>2</sub> O | standard entropy,<br>S <sup>⊕</sup> /JK <sup>−1</sup> mol <sup>−1</sup> |
|---------------------------|-------------------------------------------------------------------------|
| solid                     | +48.0                                                                   |
| liquid                    | +70.1                                                                   |
| gas                       | +188.7                                                                  |

Table 2.1

(i) Explain the difference in the  $S^{\bullet}$  values of H<sub>2</sub>O(s) and H<sub>2</sub>O(l).

.....

......[1]

(ii) Explain why the increase in  $S^{\bullet}$  is **much** greater when H<sub>2</sub>O boils than when it melts.

......[1]

(iii) The energy changes for  $H_2O(s) \rightarrow H_2O(l)$  are shown.

 $\Delta G = 0.00 \text{ kJ mol}^{-1}$  $\Delta H = +6.03 \text{ kJ mol}^{-1}$ 

Use these data to show that the melting point of  $H_2O(s)$  is 0 °C.

[1]

(d) Metal-air batteries are electrochemical cells that generate electrical energy from the reaction of metal anodes with air.

The standard electrode potentials for the zinc-air battery are shown.

 $[Zn(OH)_4]^{2-} + 2e^- \rightleftharpoons Zn + 4OH^- \qquad E^{\Theta} = -1.22V$   $\frac{1}{2}O_2 + H_2O + 2e^- \rightleftharpoons 2OH^- \qquad E^{\Theta} = +0.40V$ 

(i) Calculate the standard cell potential,  $E_{cell}^{e}$ , of the zinc–air battery.

 $E_{\text{cell}}^{\Theta}$  = .....V [1]

(ii) The zinc–air battery usually operates at pH11 and 298K. The overall cell potential is dependent on [OH<sup>-</sup>].

The Nernst equation shows how the electrode potential at the cathode changes with [OH<sup>-</sup>].

$$E = 0.40 - \left(\frac{0.059}{z}\right) \log([OH^{-}]^{2})$$

Calculate the electrode potential, *E*, at pH11.

[Total: 13]

| <b>3</b> Iron is a transition metal in Group 8 of the Periodic Table. |     |            | on metal in Group 8 of the Periodic Table. |                                                                                                                          |
|-----------------------------------------------------------------------|-----|------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                       | (a) | (i)        | Explair                                    | h why iron has variable oxidation states.                                                                                |
|                                                                       |     |            |                                            |                                                                                                                          |
|                                                                       |     |            |                                            |                                                                                                                          |
|                                                                       |     |            |                                            | [1]                                                                                                                      |
|                                                                       |     | (ii)       | Comple                                     | ete the shorthand electronic configurations of Fe and Fe <sup>3+</sup> .                                                 |
|                                                                       |     |            | Fe                                         | [Ar]                                                                                                                     |
|                                                                       |     |            | Fe <sup>3+</sup>                           | [Ar]                                                                                                                     |
|                                                                       |     |            |                                            | [1]                                                                                                                      |
|                                                                       | (b) | An a       | aqueous                                    | s solution of $Fe(NO_3)_3$ contains the complex $[Fe(H_2O)_6]^{3+}$ .                                                    |
|                                                                       |     | Whe<br>The | en solut<br>red cor                        | ions of KSCN(aq) and $[Fe(H_2O)_6]^{3+}(aq)$ are mixed, a colour change is observed. nplex $[Fe(H_2O)_5SCN]^{2+}$ forms. |
|                                                                       |     | (i)        | Define                                     | complex.                                                                                                                 |
|                                                                       |     |            |                                            |                                                                                                                          |
|                                                                       |     |            |                                            | [1]                                                                                                                      |
|                                                                       |     | (ii)       | State tl                                   | he coordination number of Fe in $[Fe(H_2O)_6]^{3+}$ .                                                                    |
|                                                                       |     |            |                                            | [1]                                                                                                                      |
|                                                                       |     | (iii)      | The H-                                     | –O—H bond angle in water is 104.5°.                                                                                      |
|                                                                       |     |            | Sugge                                      | st the H—O—H bond angle in $[Fe(H_2O)_6]^{3+}$ .                                                                         |
|                                                                       |     |            | Explair                                    | n your answer.                                                                                                           |
|                                                                       |     |            |                                            |                                                                                                                          |
|                                                                       |     |            |                                            |                                                                                                                          |
|                                                                       |     |            |                                            | [1]                                                                                                                      |
|                                                                       |     |            |                                            |                                                                                                                          |

......[2]

13

[Turn over

(c) Table 3.1 gives values for the stability constants,  $K_{\text{stab}}$ , of different complexes of iron.

|  | Tab | le | 3.1 |  |
|--|-----|----|-----|--|
|--|-----|----|-----|--|

| complex                                                                             | stability constant, $K_{\rm stab}$ |
|-------------------------------------------------------------------------------------|------------------------------------|
| [Fe(H <sub>2</sub> O) <sub>5</sub> (H <sub>2</sub> PO <sub>4</sub> )] <sup>2+</sup> | 5.90 × 10 <sup>1</sup>             |
| [Fe(H <sub>2</sub> O) <sub>5</sub> SCN] <sup>2+</sup>                               | 1.30 × 10 <sup>2</sup>             |

(i)  $[Fe(H_2O)_5(H_2PO_4)]^{2+}$  can form when  $H_3PO_4$  reacts with  $[Fe(H_2O)_6]^{3+}$ .

Write an equation for this reaction.

......[1]

(ii) Write an expression for  $K_{stab}$  of  $[Fe(H_2O)_5SCN]^{2+}$  and give its units.

 $K_{\rm stab}$  =

(iii) Use the stability constant data in Table 3.1 to calculate the value of the equilibrium constant,  $K_c$ , for the following equilibrium.

$$[Fe(H_2O)_5(H_2PO_4)]^{2+} + SCN^- \rightleftharpoons [Fe(H_2O)_5SCN]^{2+} + H_2PO_4^-$$

[Total: 14]

- 4 Ruthenium and osmium are transition metals below iron in Group 8 of the Periodic Table.
  - (a) Two different complex ions, **X** and **Y**, can form when anhydrous RuCl<sub>3</sub> reacts with water under certain conditions.

X and Y have octahedral geometry.

Aqueous samples of **X** and **Y** react separately with an excess of  $AgNO_3(aq)$ . Different amounts of AgCl are precipitated:

- 1 mole of complex ion **X** produces 2 moles of AgCl
- 1 mole of complex ion **Y** produces 1 mole of AgC*l*.
- (i) Complete Table 4.1 to suggest formulae for X and Y.

| Table | 4.1 |
|-------|-----|
|-------|-----|

|                    | X | Y   |
|--------------------|---|-----|
| formula of complex |   |     |
|                    |   | [2] |

(ii) Both complexes react with an excess of bipyridine, bipy, to form a mixture of two stereoisomers of [Ru(bipy)<sub>3</sub>]<sup>3+</sup>.



Bipyridine is a bidentate ligand.

Draw three-dimensional diagrams of the two stereoisomers of  $[Ru(bipy)_3]^{3+}$ .

Use Ń

N to represent the bipy ligand in your structures.





[2]

(b) Fig. 4.1 shows another ruthenium complex.



Fig. 4.1

This complex contains the neutral ligand pyrazine.

#### pyrazine



(i) Suggest how pyrazine is able to bond to two separate ruthenium ions.

......[1]

(ii) Pyrazine is an aromatic compound. The bonding and structure of pyrazine is similar to that of benzene.

Describe and explain the shape of pyrazine.

In your answer, include:

- the hybridisation of the nitrogen and carbon atoms
- how orbital overlap forms  $\pi$  bonds between the atoms in the ring.

- (iii) Predict the number of peaks seen in the carbon–13 NMR spectrum of pyrazine. Explain your answer. (iv) The overall charge of the ruthenium complex in Fig. 4.1 is 5+. Deduce the possible oxidation states of the two ruthenium ions in the complex. ......[1] (c) Osmium tetroxide,  $OsO_4$ , reacts with alkenes in a similar manner to cold dilute acidified MnO₄<sup>−</sup>. Fig. 4.2 shows a proposed synthesis of a condensation polymer G. step 1 HOOC COOH ClOC COCG step 3 OsO₄ step 2 Fig. 4.2
  - (i) Suggest a reagent for step 1.

(ii) Draw the structure of exactly **one** repeat unit of the condensation polymer **G**.

The ester linkage should be shown fully displayed.

[2]

[Total: 13]

**5** Compound **Q** can be synthesised from chlorobenzene in seven steps, using the route shown in Fig. 5.1.



Fig. 5.1

(a) (i) Write an equation for the formation of the electrophile for step 1.

......[1]

(ii) Complete the mechanism in Fig. 5.2 for step 1, the alkylation of chlorobenzene.Include all relevant curly arrows and charges.

Draw the structure of the intermediate.

(iii) Step 2 is an oxidation reaction.

Construct an equation for the reaction in step 2.



Fig. 5.2

Use [O] to represent an atom of oxygen from an oxidising agent.

|      | [1]                                                                           |
|------|-------------------------------------------------------------------------------|
| (iv) | Suggest reagents for the conversion of <b>K</b> to <b>M</b> in steps 3 and 4. |
|      | step 3                                                                        |
|      | step 4                                                                        |
| (v)  | Identify the type of reaction that occurs in step 5.                          |
|      | [1]                                                                           |

[3]

(vi) Step 7 takes place when **P** is heated with a weak base such as  $K_2CO_3(aq)$ .



(vii) **Q** is optically active.

Explain the meaning of optically active.

......[1]

(viii) Give two reasons why it might be desirable to synthesise a single optical isomer of **Q** for use as a drug.

 (b) **Q** is commonly used in conjunction with aspirin.



Aspirin is a weak Brønsted–Lowry acid.

(i) The  $pK_a$  of aspirin is 3.49.

75 mg of aspirin dissolves in water to form  $100 \, \text{cm}^3$  of an aqueous solution.

Calculate the pH of this solution.

[*M*<sub>r</sub>: aspirin, 180.0]

pH = ......[3]

(ii) Aspirin undergoes acid hydrolysis in the stomach.

Give the structures of the organic products of this acid hydrolysis.



[2]

[Total: 17]

6 Amino acids are molecules that contain  $-NH_2$  and -COOH functional groups.

Glycine,  $\mathrm{H_2NCH_2COOH},$  is the simplest stable amino acid.

- (a) The isoelectric point of glycine is 6.2.
  - (i) Define isoelectric point.

[1]

[1]

(ii) Draw the structure of glycine at pH4.

(b) Fig. 6.1 shows two syntheses starting with glycine.



Fig. 6.1

| (i)   | State the essential conditions for reaction 1.                                                                                           |     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------|-----|
|       |                                                                                                                                          | [1] |
| (ii)  | Identify the reagent used in reaction 2.                                                                                                 |     |
|       |                                                                                                                                          | [1] |
| (iii) | Draw the structure of the organic product <b>U</b> that forms when hippuric acid reacts with excess of $\text{LiA}_{H_4}$ in reaction 3. | an  |

[2]

(iv) A molecule of phenylalanine, **R**, can react with a molecule of glycine to form two dipeptides, **S** and **T**.

**S** and **T** are structural isomers.



Draw the structures of these dipeptides. The peptide bond formed should be shown fully displayed.

| S | т |  |
|---|---|--|
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |
|   |   |  |

[2]

(c) A student proposes a synthesis of hippuric acid by the reaction of benzamide, C<sub>6</sub>H<sub>5</sub>CONH<sub>2</sub>, and chloroethanoic acid, C*l*CH<sub>2</sub>COOH.

The reaction does not work well because benzamide is a very weak base.

(i) Explain why amides are weaker bases than amines.

(ii) The  $pK_a$  of chloroethanoic acid is 2.86 whereas the  $pK_a$  of ethanoic acid is 4.76.

Explain the difference between these two  $pK_a$  values.

(d) Compound V is another amino acid.

The proton (<sup>1</sup>H) NMR spectrum of **V** shows hydrogen atoms in five different environments, **a**, **b**, **c**, **d** and **e**, as shown in Fig. 6.2.



Fig. 6.2

| environment of proton              | example                                                                                        | chemical shift range, δ/ppm |
|------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------|
| alkane                             | -CH <sub>3</sub> , -CH <sub>2</sub> -, >CH-                                                    | 0.9–1.7                     |
| alkyl next to C=O                  | CH <sub>3</sub> -C=O, -CH <sub>2</sub> -C=O,<br>>CH-C=O                                        | 2.2–3.0                     |
| alkyl next to aromatic ring        | CH <sub>3</sub> –Ar, –CH <sub>2</sub> –Ar,<br>>CH–Ar                                           | 2.3–3.0                     |
| alkyl next to electronegative atom | CH <sub>3</sub> -O, -CH <sub>2</sub> -O,<br>-CH <sub>2</sub> -C <i>l</i> , -CH <sub>2</sub> -N | 3.2-4.0                     |
| attached to alkene                 | =C <b>H</b> R                                                                                  | 4.5–6.0                     |
| attached to aromatic ring          | H–Ar                                                                                           | 6.0–9.0                     |
| aldehyde                           | HCOR                                                                                           | 9.3–10.5                    |
| alcohol                            | ROH                                                                                            | 0.5–6.0                     |
| phenol                             | Ar–O <b>H</b>                                                                                  | 4.5–7.0                     |
| carboxylic acid                    | RCOOH                                                                                          | 9.0–13.0                    |
| alkyl amine                        | R–N <b>H</b> –                                                                                 | 1.0–5.0                     |
| aryl amine                         | Ar–NH <sub>2</sub>                                                                             | 3.0–6.0                     |
| amide                              | RCONHR                                                                                         | 5.0–12.0                    |

(i) Complete Table 6.2 for the proton (<sup>1</sup>H) NMR spectrum of **V** taken in  $CDCl_3$ .

Table 6.1 gives some relevant data.

## Table 6.2

| proton                              | а | b         | С | d | е |
|-------------------------------------|---|-----------|---|---|---|
| chemical shift range, $\delta$ /ppm |   |           |   |   |   |
| name of splitting pattern           |   | multiplet |   |   |   |

[4]

(ii) Complete Table 6.3 by placing a tick (✓) to indicate any protons whose peaks are still present in the proton (<sup>1</sup>H) NMR spectrum of V taken in D<sub>2</sub>O.

### Table 6.3

| proton                      | а | b | С | d | е |
|-----------------------------|---|---|---|---|---|
| present in D <sub>2</sub> O |   |   |   |   |   |

#### **BLANK PAGE**

## Important values, constants and standards

| molar gas constant              | $R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$                                                                                                         |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Faraday constant                | $F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$                                                                                                            |
| Avogadro constant               | $L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$                                                                                                                  |
| electronic charge               | $e = -1.60 \times 10^{-19} \mathrm{C}$                                                                                                                        |
| molar volume of gas             | $V_{\rm m}$ = 22.4 dm <sup>3</sup> mol <sup>-1</sup> at s.t.p. (101 kPa and 273 K)<br>$V_{\rm m}$ = 24.0 dm <sup>3</sup> mol <sup>-1</sup> at room conditions |
| ionic product of water          | $K_{\rm w}$ = 1.00 × 10 <sup>-14</sup> mol <sup>2</sup> dm <sup>-6</sup> (at 298 K (25 °C))                                                                   |
| specific heat capacity of water | $c = 4.18 \mathrm{kJ} \mathrm{kg}^{-1} \mathrm{K}^{-1} $ (4.18 J g <sup>-1</sup> K <sup>-1</sup> )                                                            |

|                   |                   |                    |                    |                              |                    |                   | Ine Pel            | iodic la          | The Periodic Table of Elements | ments            |                     |                   |                   |                    |                    |                   |                 |
|-------------------|-------------------|--------------------|--------------------|------------------------------|--------------------|-------------------|--------------------|-------------------|--------------------------------|------------------|---------------------|-------------------|-------------------|--------------------|--------------------|-------------------|-----------------|
|                   |                   |                    |                    |                              |                    |                   |                    | Group             | dno                            |                  |                     |                   |                   |                    |                    |                   |                 |
| ~                 | 2                 |                    |                    |                              |                    |                   |                    |                   |                                |                  |                     | 13                | 14                | 15                 | 16                 | 17                | 18              |
|                   |                   |                    |                    |                              |                    |                   | -                  |                   |                                |                  |                     |                   |                   |                    |                    |                   | 2               |
|                   |                   |                    |                    |                              |                    |                   | т                  |                   |                                |                  |                     |                   |                   |                    |                    |                   | He              |
|                   |                   |                    |                    | Key                          |                    |                   | hydrogen<br>1.0    |                   |                                |                  |                     |                   |                   |                    |                    |                   | helium<br>4.0   |
| e                 | 4                 |                    |                    | atomic number                |                    | -                 |                    |                   |                                |                  |                     | 5                 | 9                 | 7                  | 80                 | 6                 | 10              |
| :                 | Be                |                    | ato                | atomic symbol                | bol                |                   |                    |                   |                                |                  |                     | Ш                 | U                 | z                  | 0                  | ш                 | Ne              |
| lithium<br>6.9    | beryllium<br>9.0  |                    | rele               | name<br>relative atomic mass | ISS                |                   |                    |                   |                                |                  |                     | boron<br>10.8     | carbon<br>12.0    | nitrogen<br>14.0   | oxygen<br>16.0     | fluorine<br>19.0  | neon<br>20.2    |
| 1                 | 12                |                    |                    |                              |                    |                   |                    |                   |                                |                  |                     | 13                | 14                | 15                 | 16                 | 17                | 18              |
| Na                | Mg                |                    |                    |                              |                    |                   |                    |                   |                                |                  |                     | Ρl                | S.                | ٩                  | ა                  | Cl                | Ar              |
| sodium<br>23.0    | magnesium<br>24.3 | e                  | 4                  | 5                            | 9                  | 7                 | 8                  | 0                 | 10                             | 1                | 12                  | aluminium<br>27.0 | silicon<br>28.1   | phosphorus<br>31.0 | sulfur<br>32.1     | chlorine<br>35.5  | argon<br>39.9   |
| 19                | 20                | 21                 | 22                 | 23                           |                    | 25                | 26                 | 27                | 28                             | 29               | 30                  | 31                | 32                |                    | 34                 | 35                | 36              |
| ¥                 | Ca                | Sc                 | F                  | >                            |                    | Mn                | Ъe                 | ပိ                | īZ                             | Cu               | Zn                  | Ga                | Ge                |                    | Se                 | Br                | Ϋ́              |
| potassium<br>39.1 | calcium<br>40.1   | scandium<br>45.0   | titanium<br>47.9   | vanadium<br>50.9             | chromium<br>52.0   | manganese<br>54.9 | iron<br>55.8       | cobalt<br>58.9    | nickel<br>58.7                 | copper<br>63.5   | zinc<br>65.4        | gallium<br>69.7   | germanium<br>72.6 | arsenic<br>74.9    | selenium<br>79.0   | bromine<br>79.9   | krypton<br>83.8 |
| 37                | 38                | 39                 | 40                 | 41                           |                    | 43                | 44                 | 45                | 46                             | 47               | 48                  | 49                | 50                |                    | 52                 | 53                | 54              |
| Rb                | Sr                | ≻                  | Zr                 | ЧN                           | Мо                 | р                 | Ru                 | Rh                | Pd                             | Ag               | Cq                  | In                | Sn                | Sb                 | Ъ                  | I                 | Xe              |
| rubidium<br>85.5  | strontium<br>87.6 | yttrium<br>88.9    | zirconium<br>91.2  | niobium<br>92.9              | molybdenum<br>95.9 | technetium<br>-   | ruthenium<br>101.1 | rhodium<br>102.9  | palladium<br>106.4             | silver<br>107.9  | cadmium<br>112.4    | indium<br>114.8   | tin<br>118.7      | antimony<br>121.8  | tellurium<br>127.6 | iodine<br>126.9   | xenon<br>131.3  |
| 55                | 56                | 57-71              | 72                 | 73                           | 74                 | 75                | 76                 | 77                | 78                             | 79               | 80                  | 81                | 82                | 83                 | 84                 | 85                | 86              |
| Cs                | Ba                | lanthanoids        | Ŧ                  | Ца                           | 8                  | Re                | S                  | Ir                | Ę                              | Au               | Hg                  | 11                | Pb                | Ξ                  | Ро                 | At                | Rn              |
| caesium<br>132.9  | barium<br>137.3   |                    | hafnium<br>178.5   | tantalum<br>180.9            | tungsten<br>183.8  | rhenium<br>186.2  | osmium<br>190.2    | iridium<br>192.2  | platinum<br>195.1              | gold<br>197.0    | mercury<br>200.6    | thallium<br>204.4 | lead<br>207.2     | bismuth<br>209.0   | polonium<br>I      | astatine<br>-     | radon<br>-      |
| 87                | 88                | 89-103             | 104                | 105                          | 106                | 107               | 108                | 109               | 110                            | 111              | 112                 | 113               | 114               | 115                | 116                | 117               | 118             |
| Ļ                 | Ra                | actinoids          | Ŗ                  | Db                           | Sg                 | Bh                | Hs                 | Mt                | Ds                             | Rg               | C                   | ЧN                | 11                | Mc                 | ۲<                 | ц<br>S            | Og              |
| francium<br>-     | radium<br>–       |                    | rutherfordium<br>- | dubnium<br>I                 | seaborgium<br>-    | bohrium<br>–      | hassium<br>-       | meitnerium<br>-   | darmstadtium<br>-              | roentgenium<br>- | copernicium<br>-    | nihonium<br>–     | flerovium<br>-    | moscovium<br>-     | livermorium<br>-   | tennessine<br>-   | oganesson<br>-  |
|                   |                   |                    |                    |                              |                    |                   |                    |                   |                                |                  |                     |                   |                   |                    |                    |                   |                 |
|                   | _                 | 57                 | 58                 | 59                           | 60                 | 61                | 62                 | 63                | 64                             |                  | 99                  |                   | 68                | 69                 | 20                 | 71                |                 |
| lanthanoids       | ids               | La                 | Ce                 | Pr                           | Nd                 | Pm                | Sm                 | Еu                | рд                             |                  | Ŋ                   |                   | ц                 | T                  | γb                 | Lu                |                 |
|                   | _                 | lanthanum<br>138.9 | cerium<br>140.1    | praseodymium<br>140.9        | neodymium<br>144.2 | promethium<br>-   | samarium<br>150.4  | europium<br>152.0 | gadolinium<br>157.3            | terbium<br>158.9 | dysprosium<br>162.5 | holmium<br>164.9  | erbium<br>167.3   | thulium<br>168.9   | ytterbium<br>173.1 | Iutetium<br>175.0 |                 |
|                   |                   | 68                 | 06                 | 91                           | 92                 | 93                | 94                 | 95                | 96                             |                  | 98                  |                   | 100               | 101                | 102                | 103               |                 |
| actinoids         | (0                | Ac                 | Ч                  | Ра                           | ⊃                  | Np                | Pu                 | Am                | Cm                             | Ŗ                | Ç                   | Es                | Еm                | Md                 | No                 | Ļ                 |                 |
|                   | _                 | actinium<br>-      | thorium<br>232.0   | protactinium<br>231.0        | uranium<br>238.0   | neptunium<br>-    | plutonium<br>–     | americium<br>-    | curium                         | berkelium<br>-   | californium<br>–    | einsteinium<br>–  | fermium<br>-      | mendelevium<br>-   | nobelium<br>-      | lawrencium<br>-   |                 |

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.