

Cambridge International AS & A Level

EX VERT	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	

CHEMISTRY

Paper 5 Planning, Analysis and Evaluation

9701/52

May/June 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. ۲
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided. •
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 30.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper. •
- Important values, constants and standards are printed in the question paper. •

DO NOT WRITE IN THIS MARGIN

* 0019654970002 *

Calcium carbonate, CaCO₃(s), decomposes when heated, as shown.

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

2

The enthalpy change of reaction, ΔH_r , for the thermal decomposition of CaCO₃(s) **cannot** be measured directly. Instead, a procedure involving two experiments is used. In each experiment, the enthalpy change of a different reaction is determined.

The equation for the reaction in experiment 1 is shown. The enthalpy change for this reaction is ΔH_1 .

experiment 1 $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$

The equation for the reaction in experiment 2 is shown. The enthalpy change for this reaction is ΔH_2 .

experiment 2 $CaO(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(I)$

Experiment 1

- step 1 Weigh a 0.0500 mol sample of powdered CaCO₃(s).
- **step 2** Transfer 50.00 cm³, an excess, of 2.00 mol dm⁻³ hydrochloric acid, HC*l*(aq), into a small glass beaker.
- **step 3** Start a timer and measure the temperature of the HCl(aq) in the beaker every 30 seconds for $2\frac{1}{2}$ minutes.
- **step 4** After 3 minutes add the sample of CaCO₃(s) to the HC*l*(aq) in the beaker. Continue measuring the temperature of the reaction mixture every 30 seconds for a further 5 minutes.

Experiment 2

Repeat experiment 1 using calcium oxide, CaO(s), instead of CaCO₃(s).

(a) Suggest why the enthalpy change of reaction for the thermal decomposition of calcium carbonate **cannot** be measured directly.

.....[1]

(b) (i) Calculate the mass, in g, of CaCO₃(s) to be weighed using a two-decimal-place balance in step 1.

mass of $CaCO_3(s)$ = g [1]

© UCLES 2024

(ii) Outline how a student should weigh by difference using a weighing boat in order to determine the exact mass of CaCO₃(s) added to HC*l*(aq) in the beaker. Draw a results table, with appropriate headings, ready for the student to complete.

.....

(c) Identify which piece of apparatus should be used to measure the volume of HC*l*(aq) in step 2 and give a reason for your choice.

......[1]

- (d) Without making any changes to the apparatus, suggest an instruction to be added to step 3 and step 4 to make the experiment more accurate.
 -[1]

[2]

(e) A student carries out experiment 1 and obtains the results given in Table 1.1.

Table 1	.1
---------	----

time/minutes	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0
temperature/°C	19.0	19.0	19.0	19.0	19.0	\searrow	27.5	36.0	34.5	32.5	32.0	31.0
				1	1		•					
time/minutes	6.5	7.0	7.5	8.0								
temperature/°C	29.0	28.0	26.0	25.5								

Plot a graph on the grid in Fig. 1.1 to show the relationship between temperature and (i) time. Use a cross (x) to plot each data point.

The points and line of best fit for the data before 3 minutes have been drawn for you. Draw a line of best fit for the data after 3 minutes that will enable you to determine the theoretical temperature increase at 3.0 minutes.

(ii) Use your graph to determine the theoretical temperature increase at 3.0 minutes.

theoretical temperature increase at 3.0 minutes = °C [1]

[2]

(f) Suggest why the temperature measured at 3.5 minutes is lower than the temperature measured at 4.0 minutes.

......[1]

(g) A student carries out experiment 2 and determines a temperature increase of 62.0 °C. The heat released by the reaction, *q*, is given by:

 $q = mc\Delta T$

where *m* is the mass of HC*l*(aq). Assume that 1.00 cm^3 of HC*l*(aq) has a mass of 1.00 g and that the specific heat capacity of the solution, *c*, is $4.18 \text{ Jg}^{-1} \text{K}^{-1}$.

Calculate q, in J, for experiment 2 and hence determine ΔH_2 in kJ mol⁻¹.

q = J

 $\Delta H_2 = \dots \text{ kJ mol}^{-1}$ [2]

(h) Use the energy cycle below, your answer to (g) and the information given to determine ΔH_r for the thermal decomposition of CaCO₃.

Enthalpy change for experiment 1, $\Delta H_1 = -84 \text{ kJ mol}^{-1}$.

(If you were unable to calculate a final answer in (g), assume a value of 179 kJ mol^{-1} . This is **not** the correct answer and the sign has been omitted.)

 $CaCO_{3}(s) + 2HCl(aq) \longrightarrow CaO(s) + 2HCl(aq) + CO_{2}(g)$ $CaCl_{2}(aq) + H_{2}O(l) + CO_{2}(g)$

(i) Identify the main weakness of the experimental procedure and suggest **one** improvement to overcome this weakness. The main weakness is **not** the type of thermometer used.

[Total: 15] [Turn over

2 This question is about an experiment to investigate the effect of temperature on the equilibrium constant, K_1 , of the reaction shown.

 $Fe^{3+}(aq) + SCN^{-}(aq) \Longrightarrow FeSCN^{2+}(aq)$

The data collected is used to determine the value of the enthalpy change of the reaction.

To set up the equilibrium, aqueous iron(III) nitrate, $Fe(NO_3)_3(aq)$, is mixed with aqueous potassium thiocyanate, KSCN(aq). Aqueous iron thiocyanate ions, $FeSCN^{2+}(aq)$, have a red colour.

A colorimeter is used to measure the absorbance of the reaction mixture. A calibration graph can then be used to determine the concentration of $FeSCN^{2+}(aq)$ in the reaction mixture.

Table 2.1 shows the solutions for the experiments.

solution	ion	concentration/moldm ⁻³
Α	SCN⁻(aq)	0.00920
В	SCN⁻(aq)	0.00200
С	Fe ³⁺ (aq)	0.00200
D	Fe ³⁺ (aq)	0.500

Table 2.1

(a) Describe how you would prepare 100.0 cm^3 of solution **B** from solution **A**.

Include a calculation of the volume of solution **A** required for the preparation of solution **B**. Give the name and capacity of any key apparatus that should be used.

Write your answer as a series of numbered steps.

(b) Before starting the experiment, solutions **B** and **D** are used to produce a calibration graph. Known volumes of each solution are added together and the absorbance for each mixture is recorded. The calibration graph is shown in Fig. 2.1.

7

The concentration of solution **D** is much greater than the concentration of solution **B** in order that solution **D** is in excess. Suggest a reason why solution **D** is in excess.

Fig. 2.1

* 0019654970108 *

- (c) The following experimental procedure is used.
 - **step 1** Half-fill a large beaker with water at room temperature (25 °C).

8

- step 2 Transfer about 40 cm³ of solution B into a boiling tube and place the boiling tube in the beaker of water.
- **step 3** Transfer 5.00 cm³ of solution **C** into a test-tube and place the test-tube in the beaker of water.
- **step 4** Wait for 10 minutes.
- step 5 Transfer 5.00 cm³ of solution B from the boiling tube to the test-tube containing solution C. Stir the mixture in the test-tube and record the temperature of the mixture.
- **step 6** Measure the absorbance of the mixture in the test-tube using the colorimeter.

Change the temperature of the water in the beaker and repeat **steps 3** to **6** for different temperatures.

(i) Identify the dependent variable.

- (ii) Describe how you would adjust the temperature of the water in the large beaker to obtain a temperature of 10 °C.
-[1]
- (d) A student obtains the results given in Table 2.2.

Table 2.2

1	2	3	4
temperature/°C	relative absorbance	$[FeSCN^{2+}]/10^{-5} mol dm^{-3}$	<i>К</i> ₁
25	0.60		
55	0.42		

The value of the equilibrium constant, K_1 , can be determined using equation 1.

equation 1
$$K_1 = \frac{x}{(0.0010 - x)^2}$$

x is the value of [FeSCN²⁺] in mol dm⁻³.

- (i) Use the calibration graph in Fig. 2.1 to complete column 3 in Table 2.2. Record values to **one** decimal place.
- (ii) Use equation 1 to complete column 4 in Table 2.2. Record values to the nearest whole number.

[1]

(e) Another student does the same experiment for seven different temperatures, plots a graph and draws the line of best fit, as shown in Fig. 2.2.

9

Fig. 2.2

Theory predicts that the relationship between K_1 and T is given by equation 2.

equation 2 $\log K_1 = \frac{-\Delta H}{2.303RT}$ + constant

 ΔH is the enthalpy change of reaction and T is the temperature in Kelvin.

(i) Explain why the graph supports the relationship between K_1 and T given in equation 2.

.....[1]

(ii) Circle the point on the graph in Fig. 2.2 that you consider to be most anomalous.

There were no errors in the measurements in the experiment.

A student correctly suggests that the anomaly was caused because the absorbance was lower than expected by the line of best fit. Suggest why the absorbance was lower than expected.

8

[Turn over

(iii) Determine the gradient of the line of best fit in Fig. 2.2. State the coordinates of both points you use in your calculation. These must be selected from the line of best fit. Give the gradient to three significant figures.

coordinates 1	 coordinates 2	

gradient = K [2]

(iv) Use the gradient calculated in (e)(iii) and equation 2 to calculate a value for the enthalpy change of reaction, ΔH .

equation 2
$$\log K_1 = \frac{-\Delta H}{2.303RT}$$
 + constant

(If you were unable to obtain an answer to **(e)(iii)**, then use the value 635K. This is **not** the correct answer.)

 $\Delta H = \dots kJ \, mol^{-1} [2]$

[Total: 15]

© UCLES 2024

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m}$ = 22.4 dm ³ mol ⁻¹ at s.t.p. (101 kPa and 273 K) $V_{\rm m}$ = 24.0 dm ³ mol ⁻¹ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} {\rm mol}^2 {\rm dm}^{-6}$ (at 298K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

*	0019654970112	*
---	---------------	---

														-			-			-			1								
		18	He ²	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	Ъ	krypton 83.8	54	Xe	xenon 131.3	86	Rn	radon -	118	Og	oganesson -									
		17			б	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Ъ	bromine 79.9	53	Ι	iodine 126.9	85	At	astatine -	117	Ъ	tennessine -		71	Lu	Iutetium 175.0	103	Ļ	lawrencium		
		16			80	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	Ъ	tellurium 127.6	84	Ро	polonium –	116	L<	livermorium –		20	γb	ytterbium 173.1	102	No	nobelium		
		15			7	z	nitrogen 14.0	15	٩	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Ξ	bismuth 209.0	115	Mc	moscovium -		69	Tm	thulium 168.9	101	РМ	mendelevium		
		14			9	U	carbon 12.0	14	Si.	silicon 28.1	32	Ge	germanium 72.6	50	Sn	tin 118.7	82	РЬ	lead 207.2	114	Fl	flerovium -		68	ш	erbium 167.3	100	Еm	fermium		
		13			5	В	boron 10.8	13	Al	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	LΙ	thallium 204.4	113	ЧN	nihonium –		67	РH	holmium 164.9	66	Шs	einsteinium		
										12	30	Zn	zinc 65.4	48	Cq	cadmium 112.4	80	Hg	mercury 200.6	112	Cu	copernicium -		99	Ŋ	dysprosium 162.5	86	ç	californium		
ements										1	29	Cu	copper 63.5	47	Ag	silver 107.9	79	Au	gold 197.0	111	Rg	roentgenium -		65	Tb	terbium 158.9	67	BK	berkelium		
ble of El	Group									10	28	Ī	nickel 58.7	46	Ъd	palladium 106.4	78	ħ	platinum 195.1			darmstadtium -		64	g	gadolinium 157.3	96	Cm	curium		
The Periodic Table of Elements	Gre				-					6	27	ပိ	cobalt 58.9	45	Rh	rhodium 102.9	17	Ir	iridium 192.2	109	Mt	meitnerium -		63	Еu	europium 152.0	95	Am	americium		
The Pe			+ T ¹⁰⁰	hydrogen 1.0						8	26	Ъe	iron 55.8	44	Ru	ruthenium 101.1	76	So	osmium 190.2	108	Hs	hassium -		62	Sm	samarium 150.4	94	Pu	plutonium		
								_		7	25	Mn	manganese 54.9	43	Ч	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium –		61	Pm	promethium -	93	Np	neptunium		
									bol	ass			9	24	ŗ	chromium 52.0	42	Mo	molybdenum 95.9	74	\geq	tungsten 183.8	106	Sg	seaborgium -		60	Nd	neodymium 144.2	92	
				Key	atomic number	atomic symbol	name relative atomic mass			5	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Db	dubnium –		59	P	praseodymium 140.9	91	Ра	protactinium		
						ato	rela			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ħ	hafnium 178.5	104	Rf	rutherfordium –		58	Ce	cerium 140.1	06	μT	thorium		
								_		ю	21	လိ	scandium 45.0	39	≻	yttrium 88.9	57-71	lanthanoids		89-103	actinoids			57	La	lanthanum 138.9	89	Ac	actinium		
		2			4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	ي ک	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium -			spids			(0			
		-			e	:	lithium 6.9			sodium 23.0		¥	potassium 39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	ц	francium -			lanthanoids			actinoids			

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

DO NOT WRITE IN THIS MARGIN DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN DO NO

238.0

231.0

232.0

1