

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE In Chemistry (9CH0) Paper 03 General and Practical Principles in Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.

Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018 Publications Code 1806_9CH0_03_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Acceptable Answers	Additional Guidance	Mark
1(a)(i)	An answer that makes reference to the following points: setting up of the dipole	M1 & M3 could be scored for an appropriate diagram	(3)
	 uneven distribution of electrons / (random) movement of electrons / (random) fluctuations of electrons (1) 	Allow "Change in electron density"	
	 (results in an) instantaneous dipole / temporary dipole (in the first molecule) (1) 	Allow "transient dipole" / "oscillating dipole" Do not award for "permanent dipole"	
	induction of a second dipole		
	 causes/induces a (second) dipole on another molecule (1) 	Allow neighbouring molecule / adjacent molecule Do not award for "permanent dipole"	

Question Number	Acceptable Answers	Additional Guidance	Mark
1(a)(ii)	An explanation that makes reference to the following points:	Allow reverse arguments Allow correct formulae	(2)
	relative number of electrons		
	 bromine has more electrons (than chlorine) / bromine has one more shell of electrons (than chlorine) (1) 	Bromine has 35/70 electrons and chlorine has 17/34 electrons	
		Ignore comments about protons, molecular mass etc	
		Do not award "more outer shells"	
	relative strength of intermolecular forces		
	 (so) bromine has stronger (London) forces (between molecules) / more (heat) energy is needed to overcome the London forces between bromine molecules / greater temporary dipole – induced dipole forces 	Ignore comments about 'points of contact' Allow more (London) forces Allow "bonds between molecules"	
	(1)	Award (0) marks overall if any implication that covalent bonds are broken (on boiling)	

Question Number	Acceptable Answers	Additional Guidance Mark	ĸ
1(b)	An answer that makes reference to the following points: mixing of 1st pair of solutions	Ignore any reference to any additional reactions, e.g. with silver nitrate(5)	
	• mix Br ₂ with KCl (1)	Award mark if correct ionic equation is given	
	mixing of 2 nd pair of solutions		
	 mix Br₂ with KI or mix I₂ with KBr 		
	(1)		
	colours of halogen (in cyclohexane)	Ignore colours before the addition of cyclohexane	
	 colour seen for experiment 1/ bromine is orange / yellow 	Do not award brown	
	and colour seen for experiment 2/ iodine is purple / pink / violet / lilac	Do not award red	
	(1)		
	correct ionic equation		
	• $Br_2 + 2I^- \rightarrow 2Br^- + I_2$ (1)	Allow multiples Ignore state symbols even if incorrect	
	• use of ONLY two correct experiments as above (1)		
	· · · · · · · · · · · · · · · · · · ·	(Total for Question $1 - 10$ marks)	

⁽Total for Question 1 = 10 marks)

Question Number	Acceptable Answers		Additional Guidance	Mark
2(a)	An answer that makes reference to the following point (1^{st} Step)	ts:	Ignore references to other conditions / solvent in step 1	(7)
	HCN (and KCN)	(1)	Allow HCN and CN^- / H ⁺ and CN^- / H ⁺ and KCN or KCN and H ₂ SO ₄ / KCN and HCl or HCN at pH 8 – 9 M1 can be scored for the appearance of HCN in M3	
	Nucleophilic addition	(1)	Do not award additional incorrect reaction types e.g. nitrification	
	• CH ₃ CHO + HCN \rightarrow CH ₃ CH(OH)CN	(1)	Allow skeletal formulae in equations	
	(2 nd Step)		M4, 5 & 6 dependent on the formation of any nitrile in step 1	
	 Any identified (dilute) strong acid / H⁺ 	(1)	Allow sodium hydroxide followed by acid Do not award conc. acid / just "acidify" / just "acid"	
	Heat (under reflux) / reflux	(1)	Allow warm	
	• Hydrolysis	(1)	Do not award additional incorrect reaction types Allow two equations involving NaOH and H ⁺	
	• $CH_3CH(OH)CN + 2H_2O + H^+ \rightarrow CH_3CH(OH)COOH - NH_4^+$ or $CH_3CH(OH)CN + 2H_2O \rightarrow CH_3CH(OH)COOH + NH_3$		Allow CH ₃ CH(OH)CN + 2H ₂ O + HCl \rightarrow CH ₃ CH(OH)COOH + NH ₄ Cl	

Question Number	Acceptable Answers	Additional Guidance	Mark
2(b)(i)	Condensation (polymerisation)	Ignore esterification or addition-elimination Do not award addition	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
2(b)(ii)	Repeat unit circled on diagram as follows:	Allow any repeat unit	(1)
		e.g	
		(Total for Question 2 = 9 r	narks)

Question Number	Acceptable Answers	Additional Guidance	Mark
3(a)	$0.816 / 8.16 \times 10^{-1} (g)$		(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
3(b)	 calculation of moles of CO₂ 	Example of calculation:	(1)
		(moles $CO_2 = \frac{225}{24000}$ =) 0.009375 Allow 9.375 x 10 ⁻³ / 9.38 x 10 ⁻³ / 9.4 x 10 ⁻³ Ignore SF except 1SF	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(c)	• moles of MCO ₃ (1)	Example of calculation: Moles of MCO_3 = moles CO_2 = 0.009375 (mol)	(4)
	• method for calculation of molar mass of MCO $_3$ (1)	Molar mass of $MCO_3 = 0.816 \\ 0.009375$ (= 87.04 (g mol ⁻¹)) M2 subsumes mark for M1	
	 molar mass final answer to 1, 2 or 3 SF (1) 	= 87.0 / 87 / 90 (g mol ⁻¹) NOTE M3 mark subsumes mark for M2 and M1	
	 consequential identification of Group 2 metal by name or formula (1) 	(87.0 - 60) = 27 AND Mg / Magnesium / MgCO ₃	
	NOTE Alternative method can score 3 MAX	Allow TE on answers to parts (a) and (b), with Metal consequential on calculated molar mass but M must be a Group 2 element	
	Calculation of moles of CO_3^{2-} (1)	Moles $CO_3^{2-} = 0.009375$	
	(Calculation of mass of CO_3^{2-}) Deduction of mass of M by subtraction (1)	(Mass of $CO_3^{2-} = 0.009375 \times 60 = 0.5625 \text{ g}$) Mass of M = 0.2535 g	
	Calculation of Ar of M to 1, 2 or 3 SF AND Identification of group 2 metal (1)	Ar = 0.2535/0.009375 = 27.0 / 27 / 30 (g mol ⁻¹) AND Mg / Magnesium / MgCO ₃	

Question Number	Acceptable Answers		Additional Guidance	Mark
3(d)(i)	An explanation that makes reference to the following points:			(2)
	 the bung was not replaced quickly enough 	(1)	Allow bung not fitting tightly resulting in leaks Ignore references to CO ₂ dissolving Ignore references to other types of gas leak	
	• (So) CO_2 / gas lost (to the surroundings)	(1)	Allow `smaller volume of gas collected' / lower reading of gas volume Mark points M1 and M2 independently	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(d)(ii)	An answer that makes reference to the following point:	Allow	(1)
	The acid was (already) in excess (and more acid won't	The carbonate is the limiting reactant / the	
	affect this)	acid is not the limiting reactant	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(d)(iii)	An explanation that makes reference to the following points:	Mark points M1 and M2 independently	(2)
	 rate of reaction is faster and powder has greater surface area (1) 	Both parts of statement needed	
	 no effect on (final) volume of gas and moles of (metal) carbonate are unchanged or because the rate is faster more gas will be lost before the bung is replaced so the (final) volume will be less (1) 	Both parts of statement needed Allow mass / amount for moles Allow reactant for metal carbonate	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(e)(i)		Example of equation:	(1)
	 balanced equation with state symbols 	$MCO_3(s) \rightarrow MO(s) + CO_2(g)$	
		Allow a correct equation for the decomposition of any Group 2 carbonate	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(e)(ii)	• subtractions to obtain masses (1)	Example of calculation: (mass of $CO_2 = 20.447 - 20.205$) = 0.242 AND (mass of $MCO_3 = 20.447 - 19.996$) = 0.451	(3)
	• calculation of moles of CO ₂ (1)	moles of $CO_2 = \frac{0.242}{44}$ = 0.0055(0) (mol) / 5.5(0) x 10 ⁻³ (mol) ALLOW TE from M2 to M3	
	 calculation of molar mass of MCO₃ (1) 	Mr of MCO ₃ = $\frac{0.451}{0.0055(0)}$ = 82 (g mol ⁻¹) Correct answer with or without working scores 3 Ignore SF except 1 Ignore attempts to identify the metal	

Question Number	Acceptable Answers	Additional Guidance	Mark
3(f)	An answer that makes reference to the following point: Student 3 used a smaller mass / less (and the uncertainty of the balance was the same) or Student 1 used a larger mass / more (and the uncertainty of the balance was the same)	Allow calculations comparing the two percentage errors: e.g. Student 1:- $(0.001/0.816) \times 100\% = 0.12\%$ and Student 3:- $0.001/0.451 \times 100\% = 0.22\%$	(1)

Question Number	Acceptable Answers		Additional Guidance	Mark
3(g)	An explanation that makes reference to the following points:			(2)
	• more CO ₂ (would appear to be) given off	(1)		
	• (So) calculated molar mass is smaller	(1)	M2 dependent on M1	
	OR			
	• Less MO would appear to have been formed	(1)		
	Calculated molar mass would be greater	(1)	M2 dependent on M1	

(Total for Question 3 = 18 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
4(a)(i)	(CH ₃) ₄ Si	Allow partially or fully displayed formula Ignore connectivity H_3C H_3	(1)

Question Number	Acceptable Answers	Additional Guidance	Mark
4(a)(ii)	An answer that makes reference to any two of the following:		(2)
	 single peak / all H or all C in same environment / no splitting pattern (1) 	Allow 12 H or 4 C in the same environment Ignore references to inertness / non- toxicity / cost / non-polar(ity)	
	• (TMS) peak to the right / upfield / out of the way of other peaks / peak doesn't overlap with other peaks (1)	Ignore chemical shift $= 0$	
	 (TMS) low boiling temperature / volatile / can be easily removed (1) 		
	• gives a strong signal so only a small amount needed (1)	12 H / 4 C are equivalent so gives a strong signal scores 2 marks	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(b)(i)	C(CH ₃) ₃ COOCH ₃	Allow displayed or skeletal formulae	(2)
	or		
	$ \begin{array}{c} CH_{3} \\ H_{3}C - C - C - C - O - CH_{3} \\ $		
	CH ₃ COOC(CH ₃) ₃		
	or $\begin{array}{c} O & CH_3 \\ \ & \ \\ H_3C - C - O - C - CH_3 \\ \\ CH_3 \end{array}$ (1)		

Question Number	Acceptable Answers		Additional Guidance	Mark
4(b)(ii)	An answer that makes reference to the following points:			(5)
	- the chemical shift δ 2.2 identified	(1)	$CH_3C=O$ / methyl attached to C=O	
	 four remaining chemical shifts identified 	(2)	Identifies 2 or 3 chemical shifts correctly scores 1	
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	 two splitting patterns given and explained 	(2)	1 specific splitting patterns explained scores 1	

Questio n Number	Acceptable Answers	Additional Guidance	Mark
4(c)(i)	Any two of the following	Allow displayed or skeletal formulae	(2)
	(CH ₃) ₂ CHCH(CH ₃)COOH /		
	СH ₃ CH ₃ H ₃ CССОН H H O (1	L)	
	CH ₃ CH ₂ C(CH ₃) ₂ COOH /		
	Н СН ₃ H ₃ CССОН H СН ₃ О	1)	
	(CH ₃) ₂ CHCH ₂ CH ₂ COOH /		
	СН ₃ Н Н О H ₃ CССОН H H H	1)	

Question Number	Acceptable Answers	Additional Guidance	Mark
4(c)(ii)	но-Он	Do not award other types of structure	(1)

(Total for Question 4 = 13 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
5(a)	+5	Allow 5+ / +V / V+ / (V) / 5 Do not award V ⁺	(1)

Question Number	Acceptable Answers		Additional Guidance	Mark
5(b)	A description that makes reference to the following points:			(7)
	M1 and M2 -colours			
	Yellow \rightarrow blue \rightarrow green \rightarrow violet / lavender / purple / mauve			
	2 or 3 colours linked to correct species / oxidation states / reactions	(1)		
	4 colours linked to correct species / oxidation states / reactions	(1)		
	M3 - statement			
	Statement that sequence is from $+5$ to $+4$ to $+3$ to $+2$		M3 can be implied from species in	
	or		explanation or equations	
	(step-wise) reduction / zinc is a reducing agent	(1)		
	M4, M5 and M6 - equations			
	These three equations, with appropriate E° values		Allow multiples Ignore state symbols even if incorrect	
	$Zn + 2VO_3^- + 8H^+ \rightarrow Zn^{2+} + 2VO^{2+} + 4H_2O$ and $E^{\Theta} = (+)1.76$ (V)	(1)		
	$Zn + 2VO^{2+} + 4H^+ \rightarrow Zn^{2+} + 2V^{3+} + 2H_2O$ and $E^{\circ} = (+)1.1(0)$ (V)	(1)		
	$Zn + 2V^{3+} \rightarrow Zn^{2+} + 2V^{2+}$ and $E^{e} = (+)0.5(0)$ (V)	(1)	2 correct equations with incorrect	
			E° scores 1	
	$M7$ share at M^{2+}		3 correct E° with incorrect	
	M7 – stops at V^{2+}		equations scores 1	
	No (further) reduction (feasible) to V metal / V(0)			
	or $7n \pm \sqrt{2^+} + 7n^{2+} \pm \sqrt{1000}$ feasible			
		(1)		
	$Zn + V^{2+} \rightarrow Zn^{2+} + V$ not feasible or	(1)		

Question Number	Acceptable Answers	Additional Guidance	Mark
5(c)	A explanation that makes reference to the following points:	Ignore any references to heterogeneous catalysis	(2)
	M1		
	V changes (its oxidation state / oxidation number) from $+5$ to $+4$ (as it oxidises the sulfur dioxide)	Allow Forms V_2O_4 / VO_2 (as an intermediate)	
	OR	Do not award VO ²⁺ or VO ₃ ⁻ or VO ₂ ⁺	
	The oxidation number of V decreases in the reaction		
	OR		
	Vanadium is reduced in the reaction with SO_2		
	OR		
	V_2O_5 oxidises the SO ₂ / S		
	OR		
	$V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$		
	M2 (1)		
	(Then) returns to +5 (oxidation state / oxidation number) by reacting with oxygen	Allow (re-) forms V_2O_5	
	OR		
	$2 V_2 O_4 + O_2 \rightarrow 2 V_2 O_5$ (1)		

Question Number		Acceptable	e Answers	Additional Guidance	Mark
*5(d)	coherent and fully-sustained Marks are awa answer is stru The following awarded for in Number of indicative marking points seen in answer 6 5-4 3-2 1 0 The following	logically structured reasoning. arded for indication indicative and show table shows how ndicative content Number of marks awarded for indicative marking points 4 3 2 1 0	the marks should be	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general it would be expected that 5 or 6 indicative points would score 2 reasoning marks, and 3 or 4 indicative points would score 1 reasoning mark. A total of 2, 1 or 0 indicative points would score 0 marks for reasoning. If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s).	(6)

Indicative content (IPs) IP1:	Allow omission of square brackets throughout Allow for IP1
• $[Cu(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow [Cu(OH)_2(H_2O)_4](s) + 2H_2O(I)$	$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$
 IP2: blue ppt / blue solid (when [Cu(OH)₂(H₂O)₄](s) is formed) 	Only penalise incorrect or missing state symbols in this equation (IP1)
IP3: • $[Cu(H_2O)_6]^{2+}(aq) + 4NH_3(aq) \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+}(aq) + 4H_2O(I)$	Allow for IP3 Cu ²⁺ (aq) + 4NH ₃ (aq) \rightarrow [Cu(NH ₃) ₄] ²⁺ (aq)
	$\begin{array}{l} [Cu(OH)_2(H_2O)_4](s) + 4NH_3 (aq) \rightarrow \\ [Cu(NH_3)_4(H_2O)_2]^{2+}(aq) + 2H_2O(I) + 2OH^-(aq) \end{array}$
	$\begin{array}{l} [Cu(OH)_2(H_2O)_4](s) \ + \ 6NH_3\ (aq) \rightarrow \\ [Cu(NH_3)_4(H_2O)_2]^{2+}(aq) \ + \ 2NH_4^+\ (aq) \ 2H_2O(I) \ + \\ 2OH^-(aq) \end{array}$
	Ignore formation of initial precipitate $Cu(OH)_2(s)$ Do not award $[Cu(NH_3)_6]^{2+}(aq)$
 IP4: Deep blue solution / dark blue solution (when [Cu(NH₃)₄(H₂O)₂]²⁺(aq) is formed) 	
IP5: • $[Cu(H_2O)_6]^{2+}(aq) + 4Cl^{-}(aq) \rightarrow [CuCl_4]^{2-}(aq) + 6H_2O(I)$	
IP6:	
 Yellow / green (solution when [CuCl₄]^{2–}(aq) is formed) 	Do not award 'yellow precipitate'
	Allow equilibrium sign ⇒ in any reaction Ignore any initial colours, even if incorrect
	(Total for Question 5 = 16 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
6(a)(i)	An answer that makes reference to the following points: • 3300 - 2500 (cm ⁻¹) and O-H (bond) • 1725 - 1700 (cm ⁻¹) and C=O (bond)	Allow any value(s) within the range $3300 - 2500$ (cm ⁻¹) Allow -OH Allow any value(s) within the range $1725 - 1700$ (cm ⁻¹) Allow $1320 - 1210$ (cm ⁻¹) and C-O	(2)

Question Number	Acceptable Answers	Additional Guidance	Mark
6(a)(ii)	 An answer that makes reference to the following points: structures 1 and 2 will have an absorption at Either C=C at 1669 - 1645 (cm⁻¹) or C-H in an alkene at 3095 - 3010 (cm⁻¹) (1) only structure 2 will have an absorption due to the presence of an alcohol / O-H at 3750 - 3200 (cm⁻¹) (1) structure 3 will have none of these absorptions / will not show C=C absorption / C-H absorption for an alkene (1) 	Reject C=C at 3010 (cm ⁻¹)	(3)

Question Number	Acceptable Answers		Additional Guidance	Mark
6(b)	 calculation of moles of NaOH 	(1)	Example of calculation: (moles NaOH = $0.140 \times \frac{250}{1000}$ = $0.035(0)$ (mol)	(2)
	 calculation of mass of NaOH 	(1)	= 40(.0) x 0.035(0) = 1.4(0) (g) Correct answer with or without working scores 2 marks	
			Allow TE for M2 on moles of NaOH Alternative route, allow M1 for conversion of concentration to 5.6 g dm ⁻³	
			Ignore SF	

Question Number	Acceptable Answers		Additional Guidance	Mark
6(c)(i)	An explanation that makes reference to the following points:			(2)
	 (because the) sodium hydroxide has been diluted 	(1)	Allow Fewer moles of sodium hydroxide present / some sodium hydroxide will have been removed	
	(the titre will be) smaller	(1)	M2 dependent on M1	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(c)(ii)	An explanation that makes reference to the following points:		(2)
	M1 no effect (on the titre) (1)	M2 depends on M1	
	M2 because the (number of) moles of sodium hydroxide is		
	unaffected (1)	Allow base / alkali / hydroxide (ions) Allow amount / mass of sodium hydroxide is unaffected	

Question Number	Acceptable Answers		Additional Guidance	Mark
6(c)(iii)			Example of calculation:	(3)
	calculation of percentage uncertainty in burette volume	(1)	$\frac{2 \times (\pm)0.05}{10.20} \times 100\% = (\pm)0.980392156\%$	
	 calculation of percentage uncertainty in volumetric flask volume 		$\frac{(\pm)0.30}{250.0} \times 100\% = (\pm)0.12\%$	
	and		and	
	in pipette volume	(1)	$\frac{(\pm)0.040}{10.0} \times 100\% = (\pm)0.4\%$	
	 identification of volume with the lowest percentage uncertainty 	(1)	Volumetric flask has the lowest uncertainty	
			Allow TE for identification in M3	
			Allow ANY number of SF in answer, from 1 SF up to calculator value	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(d)(i)	 left-hand side of equation correct (1) right-hand side of equation correct (1) 	$\begin{array}{l} \hline Example \ of \ equation \\ \\ HOOCCH=CHCOOH \ + \ 2NaOH \ \rightarrow \ NaOOCCH=CHCOONa \ + \ 2H_2O \\ \\ \\ ALLOW \ use \ of \ molecular \ formulae \ or \ ionic \ equation: \\ \\ \\ C_4H_4O_4 \ + \ 2NaOH \ \rightarrow \ Na_2C_4H_2O_4 \ + \ 2H_2O \\ \\ \\ \\ HOOCCH=CHCOOH \ + \ 2OH^- \ (+ \ 2Na^+) \ \rightarrow \\ \\ \\ \hline \\ \\ \hline \\ OOCCH=CHCOO^- \ + \ 2H_2O \ (+ \ 2Na^+) \end{array}$	(2)
		ALLOW Multiples Correct charges Do not award if O-Na covalent bond drawn IGNORE State symbols, even if incorrect	

Question Number	Acceptable Answers	Additional Guidance	Mark
6(d)(ii)	An answer that makes reference to the following points:	Mark M1 and M2 independently	(2)
	• (New mean titre) = 20.4(0) (cm ³) / double (the original value) (1)		
	• For structure 2, mole ratio / reacting ratio is 1:1 (with NaOH) (1)	Allow structure 2 has 1 COOH / 1 acid group	

Question Number	Acceptable Answers			Additional Guidance	Mark
6(e)	Structure	Test with Br₂ water	Test with acidified K ₂ Cr ₂ O ₇	3 correct ticks with no crosses scores 1	(2)
	HOOCCH=CHCOOH	*	×	Ignore descriptions of result in terms of colour (changes) / reactions occurring	
	HOCH ₂ CH=CHCH ₂ COOH	*	~		
	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ COOH	x	x		
	Left hand column correct (1 Right hand column correct (

Question Number		Acceptable Answers	Additional Guidance	Mark
6(f)(i)	• <i>E</i> -isomer:		ALLOW skeletal or displayed structures	(2)
		ноос н	ALLOW –CO ₂ H	
) C==C_	IGNORE	
		н соон	Connectivity to the -COOH group	
	• Z-isomer:	(1)	IGNORE bond angles	
		ноос	Award one mark if correct structures are drawn, but E - and Z -isomers labelled the wrong way round	
		н н (1)	Award 1 mark if incorrect molecule used but E - and Z - isomers are correct	

6(f)(ii) An answer that makes reference to the following points: (2) • restricted / limited rotation (about the C=C double bond)(1) Allow "no rotation" (2) • each carbon atom in the double bond is attached to (two) different atoms / different groups (of atoms) / to a H (atom) and a COOH group (1) Do not award the carbons are attached to 2 "different molecules" Mark points M1 and M2 independently Mark points M1 and M2 independently	Question Number	Acceptable Answers	Additional Guidance	Mark
 each carbon atom in the double bond is attached to (two) different atoms / different groups (of atoms) / to a H (atom) and a COOH group (1) Do not award the carbons are attached to 2 "different molecules" 	6(f)(ii)	An answer that makes reference to the following points:		(2)
different atoms / different groups (of atoms) / to a H (atom) and a COOH group (1) Do not award the carbons are attached to 2 "different molecules"		 restricted / limited rotation (about the C=C double bond)(1) 	Allow "no rotation"	
		different atoms / different groups (of atoms) / to a H (atom)	Do not award the carbons are attached to 2 "different molecules"	

(Total for Question 6 = 24 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
7(a)		Example of calculation:	(5)
	 calculates moles of X⁻ / NaOH present in the mixture 	(moles of X ⁻ = mol NaOH = $\frac{0.8(00) \times 10.5}{1000}$)	
	(1)	= 0.0084(0) / 8.4(0) x 10 ⁻³ (mol)	
	 calculates moles of HX which remain unreacted 	(moles of HX – mol NaOH = $\frac{0.92(0) \times 25.0}{1000}$ – 0.0084(0)	
	(1)	= 0.023(0) - 0.0084(0))	
		= 0.0146 / 1.46 x 10 ⁻² (mol)	
	 calculates / shows ratio of [HX] to [X⁻] OR ratio of moles of HX : X⁻ (as total V cancels) (1) 	$[HX] = \frac{0.0146}{0.0355} \text{ and } [X^-] = \frac{0.0084(0)}{0.0355}$	
		= 0.411 and 0.237 (mol dm ⁻³)	
		Allow use of the ratio of the moles as above (as total V cancels)	
	 re-arranges K_a or pK_a expression correctly and substitutes appropriate values (1) 	[X ⁻] 0.237	
	• final pH to 2 or 3SF (1)	$[H^+] = 9.10443038 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$	
		pH = 4.04 Allow use of pH expression to get answer: pH = $pK_a - \log \frac{[HX]}{[X^-]}$ or $pK_a + \log \frac{[X^-]}{[HX]}$	
		ALLOW TE M5 for calculation of pH from any [H ⁺] Correct answer with no working scores (5)	

Question Number	Acceptable Answers		Additional Guidance	Mark
7(b)(i)	A sketch graph which shows the following:		14-12-	(4)
	 a starting pH between 2 and 4 (inclusive) correct general shape and ends at pH = 12-13 	(1)	9-	
	 (any) vertical at 25 cm³ 	(1)	3-	
	• vertical between pH = $6 - 7$ and pH = $10 - 12$			
			Vertical must be no more than 5 pH units within these ranges	

Question Number	Acceptable Answers		Additional Guidance	Mark
7(b)(ii)	An explanation that makes reference to the follow	wing points:		(2)
	 (Read off) pH at half-neutralisation (point) / 	pH at 12.5 (cm ³)	May be shown on the sketch graph	
	OR		ALLOW read equivalence vol, add same	
	pH at half-equivalence (point)	(1)	volume of (propanoic) acid and measure	
			рН	
	• As pH = $pK_a / [H^+] = K_a / K_a = 10^{-pH}$	(1)		
			M2 dependent on mentioning half	
			equivalent / 12.5 cm ³	
			(Total far Outstion 7 - 11 m)	

(Total for Question 7 = 11 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
8(a)	Any one from:	Ignore any mention of protonation or mechanism for catalysis	(1)
	Catalyst / speeds up reaction / increases rate / increases rate of attainment of equilibrium / lowers activation energy	Do not award additional incorrect types of reaction	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(b)(i)		Ignore SF throughout 8(b)(i) to 8(c)(ii) except 1 SF, which should be penalised once only	(2)
		Example of calculation:	
	• calculation of moles of H ⁺ in 25.0 cm ³ (1)	(moles NaOH = $0.200 \times \frac{23.60}{1000}$) = 0.00472 (mol) (= mol H ⁺ in 25.0 cm ³)	
	 calculation of moles of H⁺ in 250 cm³ flask (1) 	(= 10 x 0.00472) = 0.0472 (mol) (in 250 cm ³)	
		Allow TE for M2 on moles of NaOH	
		Correct answer with or without working scores 2 marks	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(b)(ii)		Example of calculation:	(1)
	 subtracts moles of H⁺ in HCl from answer to (b)(i) 	0.0472 - 0.00400 = 0.0432 (mol)	
		Allow TE on answer to part (b)(i)	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(c)(i)		Example of calculation:	(1)
	- calculation of moles of CH_3COOH that have reacted	(0.105 - 0.0432) = 0.0618	
		Allow TE on part (b)(ii) unless negative value	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(c)(ii)	 calculation of equilibrium moles of CH₃CH₂CH₂OH (1) calculation of equilibrium moles of CH₃COOCH₂CH₂CH₃ (1) calculation of equilibrium moles of H₂O (1) 	Example of calculation: 0.0800 - 0.0618 = 0.0182 0.0618 0.111 + 0.0618 = 0.1728	(3)
		Allow TE on answer to part (c)(i) unless negative value	

Question Number		Acceptable Answers	Additional Guidance	Mark
8(d)(i)				(1)
	$(K_{\rm c} =)$	$[CH_{3}COOCH_{2}CH_{2}CH_{3}][H_{2}O]$	IGNORE state symbols even if incorrect	
		$[CH_{3}COOH][CH_{3}CH_{2}CH_{2}OH]$	Do not award round brackets	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(d)(ii)	An explanation that makes reference to the following points:	2 marks could be scored by a correct mathematical expression showing V or dm ³ cancel	(2)
	 Same number of moles/molecules on both sides of the equation (1) 	Allow same number of terms on top and bottom of K_c expression	
	• (so) volume / V cancels in K_c expression (1)	Allow units cancel out Allow " all divided by the same volume"	

Question Number	Acceptable Answers		Additional Guidance	Mark
8(d)(iii)			Example of calculation	2
	• calculates value of K_c	(1)	$K_{c} = (0.0618) \times (0.1728) = 13.58241758$ (0.0432) × (0.0182)	
	• final value of K_c quoted to 2 or 3 SF	(1)	= 14 / 13.6 (no units)	
			Correct answer with no working gains full marks	
			Ignore units No TE on wrong K_c expression	

Question Number	Acceptable Answers		Additional Guidance	Mark
8(e)	 An explanation that makes reference to the following points: the equilibrium shifts to the left or the mixture absorbs carbon dioxide from the atmosphere 	re (1)	Mark independently	(2)
	 so the mixture is (becoming more) acidic / the acid reforms 	(1)	Allow no longer alkaline Do not award just "pH decreases"	

Question Number	Acceptable Answers	Additional Guidance	Mark
8(f)	 An explanation that makes reference to the following points: carry out / repeat experiment and leave for longer than a week (1) 	Ignore pH probes / checking pH Allow repeat experiment and check titres within first week	(2)
	 the titre value / K_c value will remain unchanged (if equilibrium has been established) (1) 	Allow moles / concentration are unchanged Ignore just "results unchanged"	

Question Number	Acceptable Answers	Additional Guidance	Mark		
8(g)	 An answer that makes reference to the following points: <i>K</i>_c value will be greater than that calculated in (d)(iii) (1) 	M2 depends on M1	(2)		
	 because the (forward) reaction is endothermic or 	Ignore References to the equilibrium position shifting to the right (with increasing temperature)			
	(Total for Question 8 = 19				

TOTAL FOR PAPER = 120 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom