Write your name here Surname		Other name	s
Pearson Edexcel Level 3 GCE	Centre Number		Candidate Number
Chemistry Advanced Paper 3: General and		inciple	s in Chemistry
Wednesday 20 June 2018 - Time: 2 hours 30 minutes	5		Paper Reference 9CH0/03
Candidates must have: Data E Scient Ruler	Booklet ific calculator		Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 120.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- For the question marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Show all your working in calculations and include units where appropriate.

Turn over 🕨

his question is about some halogens and their compounds. (i) The intermolecular attractions between halogen molecules are London forces. (i) Describe how London forces form between halogen molecules. (3) (ii) The boiling temperatures of chlorine and bromine are shown in the table. (iii) The boiling temperatures of chlorine and bromine are shown in the table. (iii) The boiling temperatures of chlorine and bromine are shown in the table. (iii) The boiling temperatures of chlorine and bromine are shown in the table. (iii) The boiling temperatures of chlorine and bromine are shown in the table. (iii) The boiling temperatures of chlorine and bromine are shown in the table. (iii) The boiling temperatures of chlorine and bromine are shown in the table. (2)		Write your answer	s in the spaces provided.	
(i) Describe how London forces form between halogen molecules. (3) (ii) The boiling temperatures of chlorine and bromine are shown in the table. (iii) The boiling temperatures of chlorine and bromine are shown in the table. Halogen Boiling temperature / °C chlorine -34 bromine 59 Explain why bromine has a higher boiling temperature than chlorine.	nis question is a	about some halogens and th	heir compounds.	
(3) (ii) The boiling temperatures of chlorine and bromine are shown in the table. $\frac{Halogen}{bromine} \frac{Boiling temperature / °C}{59}$ Explain why bromine has a higher boiling temperature than chlorine.) The intermole	ecular attractions between	halogen molecules are London force	s.
HalogenBoiling temperature / °Cchlorine-34bromine59Explain why bromine has a higher boiling temperature than chlorine.	(i) Describe	how London forces form be	etween halogen molecules.	(3)
HalogenBoiling temperature / °Cchlorine-34bromine59Explain why bromine has a higher boiling temperature than chlorine.				
HalogenBoiling temperature / °Cchlorine-34bromine59Explain why bromine has a higher boiling temperature than chlorine.				
HalogenBoiling temperature / °Cchlorine-34bromine59Explain why bromine has a higher boiling temperature than chlorine.				
HalogenBoiling temperature / °Cchlorine-34bromine59Explain why bromine has a higher boiling temperature than chlorine.				
HalogenBoiling temperature / °Cchlorine-34bromine59Explain why bromine has a higher boiling temperature than chlorine.				
HalogenBoiling temperature / °Cchlorine-34bromine59Explain why bromine has a higher boiling temperature than chlorine.				
chlorine-34bromine59Explain why bromine has a higher boiling temperature than chlorine.				
bromine 59 Explain why bromine has a higher boiling temperature than chlorine.	(ii) The boilir			
Explain why bromine has a higher boiling temperature than chlorine.	(ii) The boilir	Halogen	Boiling temperature / °C	
	(ii) The boilir	Halogen chlorine	Boiling temperature / °C -34	
		Halogen chlorine bromine	Boiling temperature / °C -34 59	
		Halogen chlorine bromine	Boiling temperature / °C -34 59	
		Halogen chlorine bromine	Boiling temperature / °C -34 59	
		Halogen chlorine bromine	Boiling temperature / °C -34 59	
		Halogen chlorine bromine	Boiling temperature / °C -34 59	
		Halogen chlorine bromine	Boiling temperature / °C -34 59	
		Halogen chlorine bromine	Boiling temperature / °C -34 59	
		Halogen chlorine bromine	Boiling temperature / °C -34 59	

 (b) A student carries out experiments to determine the order of reactivity of three halogens: bromine, chlorine and iodine.
 The student is provided with aqueous solutions of the following five substances:

- bromine
- iodine
- potassium chloride
- potassium bromide
- potassium iodide.

The student has **no** access to chlorine gas or chlorine water. The student uses cyclohexane, an organic solvent, to identify the halogen present at the end of each experiment.

The student carries out the **smallest** number of experiments required to determine the order of reactivity of the halogens.

Describe the experiments and the expected observations.

Include in your answer **ionic** equations for any reactions that occur.

State symbols are **not** required.

3

DO NOT WRITE IN THIS AREA

- **2** This question is about lactic acid (2-hydroxypropanoic acid), CH₃CH(OH)COOH. Lactic acid is used to make biodegradable polymers.
 - (a) Lactic acid can be made in a two-step synthesis starting from ethanal, CH_3CHO .

Devise a reaction scheme for a two-step synthesis.

Include in your answer all reagents and conditions, the type of reaction occurring at each step, and a balanced equation for each reaction. State symbols are **not** required.

(7)

Ρ

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

3 This question is about the identification of a Group 2 carbonate.

A chemistry teacher found a bottle containing lumps of a white solid. The original label was missing from the bottle. However, someone had written 'Group 2 carbonate' on the bottle. The lumps of the anhydrous white solid were pure and dry.

The chemistry teacher tried to identify the carbonate with the help of three students. The three students worked under identical conditions and shared the same weighing balance.

Student **1** recognised that if an acid is added to a carbonate, carbon dioxide is evolved. The student decided to measure the volume of carbon dioxide evolved when the Group 2 carbonate reacts with excess nitric acid.

The student knew that 1 mol of a Group 2 carbonate produces 1 mol of carbon dioxide.

Student 1 set up the apparatus shown below.

- Student **1** weighed out some of the Group 2 carbonate and added it to a 250 cm³ conical flask.
- Student **1** then added 100 cm³ of 0.200 mol dm⁻³ nitric acid to the conical flask and replaced the bung.
- Student **1** measured the volume of gas collected in the inverted measuring cylinder at room temperature and pressure (r.t.p.) when all the Group 2 carbonate had reacted.
- Student **1** obtained the results shown in Table 1.

Measurement		Value
Mass of weighing bottle and carbonate	/ g	13.247
Mass of empty weighing bottle	/ g	12.431
Mass of carbonate used	/ g	
Volume of acid used	/ cm³	100
Volume of gas collected	/ cm ³	225

Table 1

- (a) Complete Table 1 to show the mass of the carbonate used.
- (b) Calculate the amount, in moles, of carbon dioxide collected in the measuring cylinder at r.t.p.

(1)

(1)

(c) Calculate the molar mass of the Group 2 carbonate to an appropriate number of significant figures and hence deduce the identity of the Group 2 metal.

(4)

7

 (d) Student 2 carried out the same experiment as Student 1, using the same mass of the Group 2 carbonate. Student 2 made no errors in their measurements or calculations but obtained a value for the molar mass which was 10 g mol⁻¹ greater than the value obtained by Student 1. (i) Explain one procedural error which could have resulted in Student 2 obtaining a molar mass greater than that of Student 1. 	(2)
 (ii) It was later discovered that Student 2 had used 110 cm³ of 0.200 mol dm⁻³ dilute nitric acid, instead of 100 cm³ of 0.200 mol dm⁻³ dilute nitric acid. Give a reason why this mistake would not have affected Student 2's result. No calculation is required. 	(1)
(iii) The teacher noticed that Student 2 had used the Group 2 carbonate in powdered form rather than in lumps. Explain how, if at all, this would affect the rate of reaction and the final volume of gas produced in the reaction.	(2)

DO NOT WRITE IN THIS AREA

(e) Student **3** suggested a different experiment.

Student **3** realised that, by heating the carbonate, carbon dioxide would be lost and an oxide would remain.

Student **3** decided to measure the change in mass of the carbonate and to use this information to calculate its molar mass.

- Student **3** weighed an empty test tube.
- Using a spatula, Student **3** added some of the carbonate to the test tube.
- The test tube containing the carbonate was then weighed.
- The test tube and its contents were heated to constant mass.
- The results obtained by Student **3** are shown in Table 2.

Measurement		Value
Mass of carbonate + test tube	/ g	20.447
Mass of oxide + test tube	/ g	20.205
Mass of empty test tube	/ g	19.996

Table 2

(i) Write an equation, including state symbols, for the thermal decomposition of a Group 2 carbonate, MCO₃, where M represents the metal.

(1)

(ii) Using Student **3**'s results, calculate the molar mass of the Group 2 carbonate.

(3)

(f) Student 3 used the same balance as Student 1.Give a reason why the mass of the carbonate measured by Student 3 has a	
greater percentage uncertainty than that measured by Student 1.	(1)
(g) Student 3 noticed that on heating the test tube some solid was lost. Explain how this would affect the calculated value for the molar mass of the Group 2 carbonate.	(2)
(Total for Question 3 = 1	8 marks)

This question is about the use of NMR spectroscopy to distinguish between isomers 4 of $C_6H_{12}O_2$. (a) Tetramethylsilane (TMS) is a compound used as a standard when recording both ¹H and ¹³C NMR spectra. (i) Give the structural formula of TMS. (1)(ii) TMS is an inert and non-toxic compound. State two other reasons why TMS is suitable for use as a standard when recording NMR spectra. (2) (b) (i) Draw the structural formulae of the **two** esters with formula $C_6H_{12}O_2$ that each have only two peaks, both singlets, in their high resolution proton NMR spectra. The relative peak areas are 3:1 for both esters. (2)

OT WRITE IN THIS AREA

(ii) The high resolution **proton** NMR spectrum of another isomer of $C_6H_{12}O_2$ is shown.

The ratios of the number of protons for the five sets peaks in the spectrum are given in the table.

δ/ppm	3.8	3.5	2.6	2.2	1.2
Ratio of the number of protons	2	2	2	3	3

Show that **all** these data are consistent with the displayed formula shown. Refer to the five chemical shifts and explain **two** of the splitting patterns.

(5)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 5 2 3 0 4 A 0 1 2 3 2

5 AREA				
DO NOT WRITE IN THIS AREA	······			
NOT WRITE IN THIS AREA	(c) (i)	There are three other isomers of $C_6H_{12}O_2$ which are carboxylic acids with five peaks in their carbon-13 NMR spectra. Draw the structural formula of two of these isomers.	(2)	
DO NOT WRITI				2
DO NOT WRITE IN THIS AREA	(ii)	Draw the skeletal formula of a cyclic diol isomer of $C_6H_{12}O_2$ that has only two peaks in its carbon-13 NMR spectrum.	(1)	
		(Total for Question 4 = 13 ma	arks)	

- DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
- 5 This question is about the properties of transition elements, their ions and their complexes.
 - (a) Give the oxidation state of vanadium in the compound NH_4VO_3 .

(1)

(b) Excess zinc powder is added to an acidified solution of the compound NH_4VO_3 . Using the data in the table, explain the sequence of reactions that takes place.

In your answer, include a description of what you would **see**, and the relevant ionic equations with their calculated E_{cell}^{\ominus} values. State symbols are not required.

(7)

Electrode system	E [⇔] / V
$V^{2+}(aq) + 2e^{-} \rightleftharpoons V(s)$	-1.18
$V^{3+}(aq) + e^{-} \rightleftharpoons V^{2+}(aq)$	-0.26
$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightleftharpoons V^{3+}(aq) + H_2O(I)$	+0.34
$VO_3^-(aq) + 4H^+(aq) + e^- \Longrightarrow VO^{2+}(aq) + 2H_2O(I)$	+1.00
$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	-0.76

				1			
	4	e	5		7		
	2	7	1	1	h		
	1	ŀ	l				
	1	ķ	1	ų	1		
	1	P	٩	p	ø		
	4	ķ	1	ķ			
	5	à	è		ø		
	ł	ş	è				
					7		
	i	r	1	ρ	6		
	1	b	ı		IJ		
	ì		Ì		ń		
	ъ		ń		a t		
	5			L	4		
	ŝ	7	ł	1	7		
	4	ĥ		É			
	ł	ŀ					
	÷	÷		1			
	5	à	ø	β	۲		
	3	ę		7	-		
	1			1			
	۰.		2		4		
	4	L		Ľ	3		
	ŝ	7	ł		7		
	1	þ	ę		4		
	ŝ	Ŀ.		1			
	5	1		2	2		
	1	Ē	3	Ľ	2		
	1			7	-		
	ŝ	3			h		
•	1	ş	5	5	ĥ		
	3	p	ę	2	7		
		i					
	J	Þ	ę		ų		
	5	Ļ		i.			
	1	ŗ		7	3		
	1	9	ú	ø	ø		
	٦	ę	ę	3	p		
	1	d		2	-		
•	ŝ		7		1		
	۰,	à	8	ń	k		
	1	ľ		Ĩ,))		
	2	4	ę	ø	۲		
	1	p			Ń		
	1	L	ê		a		
					1		

4		
	1	
	Â	
ŵ	÷	
4		
. 4	IX.	÷Χ.
1	×.	iΧ
s	×	X
	Č2	Ø
	Ž	Ø
ł		X
	Ě	8
k		8
k		8
k K		Ś
K		Ś

(c) Explain how vanadium(V) oxide acts as a catalyst in one step of the contact process. The equation for this step is	
$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	(2)
	Turn ov

ed hydrochloric acid. you should link observations with equations which inclu	ide the
copper-containing complex ions. Include state symbols	

4	
DO NOT WRITE IN THIS AREA	
2	
A	
S	
: 1 - 1	
: <u></u> :	
Z	
이번에	
E	
5	
H .	
0	
Z	
X	
実実会	
23/A	
1.1.5	
WRITE IN THIS AREA	
XXXI	
3	
NOT	
ž	
DONO	
DO NC	
DO NC	
DO NO	
DO NO	
DONO	
DONO	
DONO	
DONO	
DO NG	
DONOC	
DONOC	
DQ	
DO NOT WRITE IN THIS AREA DO NO	
DQ	

	s analyse the mass spectrum of ${f X}$ and find that it has a molecular ion	
peak at <i>m/z</i> :	= 116.	
The three stu	udents each propose a different structural formula for compound X .	
Structure 1	HOOCCH=CHCOOH	
Structure 2	$HOCH_2CH = CHCH_2COOH$	
Structure 3	$CH_3CH_2CH_2CH_2COOH$	
(a) The stude	ents are given the infrared spectrum of X .	
	two wavenumber ranges of the infrared absorptions providing evidence compound X is a carboxylic acid. Include the bonds responsible.	(2)
Data B	of the students suggests that this infrared spectrum and the data in the Booklet alone could be used to identify which of the three proposed	
Data E struct Show		(3)
Data E struct Show	Booklet alone could be used to identify which of the three proposed tures is X . <i>r</i> that this student's suggestion is correct. Include relevant infrared data in	(3)

P 5 2 3 0 4 A 0 1 8 3 2

(b) The students decide to carry out an acid-base titration to obtain further information about compound X.
 Each student uses solid sodium hydroxide, NaOH, to prepare a solution of concentration 0.140 mol dm⁻³.

Calculate the mass, in grams, of solid sodium hydroxide that each student should weigh out to prepare 250.0 cm^3 of a $0.140 \text{ mol dm}^{-3}$ solution.

(2)

(c) Each of the students makes up 250.0 cm³ of 0.140 mol dm⁻³ sodium hydroxide solution in a volumetric flask and titrates this solution with the same solution of **X** of known concentration.

Student A

- correctly prepares the 0.140 mol dm⁻³ sodium hydroxide solution and pipettes a volume of 10.0 cm³ of the solution into a conical flask
- fills a burette with the solution of **X** and carries out a titration
- repeats the procedure until obtaining concordant results
- obtains a mean titre of 10.20 cm³.

Student B

- dissolves the sodium hydroxide in distilled water and transfers the solution to a volumetric flask
- adds more distilled water to the volumetric flask and mixes the solution
- notices that the volumetric flask has been filled with distilled water several cm³ beyond the graduation mark
- realises the mistake, removes the extra solution and discards it
- pipettes 10.0 cm³ of the sodium hydroxide solution into a conical flask and titrates this with the solution of **X**.

Student C

- correctly prepares the 0.140 mol dm⁻³ sodium hydroxide solution
- washes a conical flask thoroughly with distilled water and pipettes 10.0 cm³ of the sodium hydroxide solution into the wet conical flask
- titrates the contents of the conical flask with the solution of **X**.
- (i) Explain how, if at all, Student **B**'s mistake affects the value of the titre.

(ii) Explain how, if at all, Student **C**'s use of a wet conical flask affects the value of the titre.

(2)

(iii) Student A uses three pieces of apparatus to measure volumes in this experiment.

- The burette has an uncertainty of $\pm 0.05 \text{ cm}^3$ for each volume reading
- The volumetric flask has an uncertainty of ± 0.30 cm³ for the volume
- The pipette has an uncertainty of ± 0.04 cm³ for the volume

Show by calculation which volume measurement has the lowest percentage uncertainty.

(3)

Structure 2 HOCH2CH=CHCH2COOH Structure 3 CH3CH2CH4CH2CH2COOH (i) Write the equation for the reaction between structure 1 and sodium hydroxide solution. State symbols are not required. (2) (ii) Deduce the value that would have been obtained for the mean titre if the structural formula of X had been structure 2. Justify your answer. (2) (e) The students could have identified the three structures using chemical tests. Complete the table to show whether or not the suggested structures react with bromine water and when heated with acidified potassium dichromate(VI). Use a cross (*) if no reaction occurs. Use a cross (*) if no reaction occurs. (2) Structure Test with bromine water Test with acidified potassium dichromate(VI).	Structure 1	HOOCCH=C	. The results indicate that X ha		
 (i) Write the equation for the reaction between structure 1 and sodium hydroxide solution. State symbols are not required. (2) (ii) Deduce the value that would have been obtained for the mean titre if the structural formula of X had been structure 2. Justify your answer. (2) (2) (2) (2) (2) (2) (3) (4) (5) (6) The students could have identified the three structures using chemical tests. (6) The students could have identified the three structures using chemical tests. (6) Complete the table to show whether or not the suggested structures react with bromine water and when heated with acidified potassium dichromate(VI). (7) Use a tick (√) if a reaction occurs. (2) (2) 	Structure 2	HOCH ₂ CH=	CHCH₂COOH		
(ii) Deduce the value that would have been obtained for the mean titre if the structural formula of X had been structure 2. Justify your answer. (2) (a) (2) (b) (2) (c) (c) (c) (c)	Structure 3	CH ₃ CH ₂ CH ₂ C	H ₂ CH ₂ COOH		
structural formula of X had been structure 2. Justify your answer. (2) (e) The students could have identified the three structures using chemical tests. Complete the table to show whether or not the suggested structures react with bromine water and when heated with acidified potassium dichromate(VI). Use a tick (✓) if a reaction occurs. Use a cross (x) if no reaction occurs. (2) Structure Test with bromine water Test with acidified					(2)
Complete the table to show whether or not the suggested structures react with bromine water and when heated with acidified potassium dichromate(VI). Use a tick (✓) if a reaction occurs. Use a cross (𝑥) if no reaction occurs. (2)	structura	l formula of X		the mean titre if the	(2)
(2) Structure Test with bromine water Test with acidified					
Structure Lest with bromine water	Complete the bromine wat	e table to shov er and when h	w whether or not the suggeste neated with acidified potassiun	d structures react with	
Dotoccilling Alcoropote/1/1	Complete the bromine wat Use a tick (🗸	e table to show er and when h) if a reaction (w whether or not the suggeste neated with acidified potassiun occurs.	d structures react with	(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

HOCH₂CH=CHCH₂COOH CH₃CH₂CH₂CH₂CCOOH

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7 This question is about weak acids.

(a) A weak acid, HX, has a K_a value of 5.25×10^{-5} mol dm⁻³. A solution was formed by mixing 10.5 cm³ of 0.800 mol dm⁻³ dilute sodium hydroxide with 25.0 cm³ of 0.920 mol dm⁻³ HX(aq). Calculate the pH of the solution formed, showing all your working.

(5)

5

2 3 0 4 A 0 2 5

8 This question is about an experiment to determine the equilibrium constant, *K*_c, for an esterification reaction producing propyl ethanoate. The equation for the reaction is

 $\begin{array}{rll} \mathsf{CH}_3\mathsf{COOH}(\mathsf{I}) &+ \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{OH}(\mathsf{I}) \rightleftharpoons \mathsf{CH}_3\mathsf{COOCH}_2\mathsf{CH}_2\mathsf{CH}_3(\mathsf{I}) \,+\, \mathsf{H}_2\mathsf{O}(\mathsf{I}) \\ \text{ethanoic acid} & \text{propan-1-ol} & \text{propyl ethanoate} \end{array}$

In an experiment to determine the equilibrium constant, K_c , the following steps were carried out.

- 6.0 cm³ of ethanoic acid (0.105 mol), 6.0 cm³ of propan-1-ol (0.080 mol) and 2.0 cm³ of dilute hydrochloric acid were mixed together in a sealed boiling tube. In this pre-equilibrium mixture, there is 0.111 mol of water
- The mixture was left for one week, at room temperature and pressure, to reach equilibrium
- The equilibrium mixture and washings were transferred to a volumetric flask and the solution made up to exactly 250.0 cm³ using distilled water
- 25.0 cm³ samples of the **diluted** equilibrium mixture were titrated with a solution of sodium hydroxide, concentration 0.200 mol dm⁻³, using phenolphthalein as the indicator
- The mean titre was 23.60 cm³ of 0.200 mol dm⁻³ sodium hydroxide solution.
- (a) State the role of the hydrochloric acid in the esterification reaction.

(b) (i) Calculate the total amount, in moles, of acid present in the **volumetric flask** in the equilibrium mixture.

(2)

(ii) The 2.0 cm^3 of dilute hydrochloric acid contained 0.00400 mol of H⁺(aq) ions. Use this and your answer to part (b)(i) to calculate the amount, in moles, of ethanoic acid present in the equilibrium mixture. (1) (c) (i) The initial mixture in the boiling tube contained 0.105 mol of ethanoic acid. Use your answer to (b)(ii) to calculate the amount, in moles, of ethanoic acid that reacted to form the ester in the equilibrium mixture. (1) (ii) Use information given in the method, and your answer to (c)(i), to calculate the amounts, in moles, of propan-1-ol, propyl ethanoate and water that are present in the equilibrium mixture. (3) Moles of propan-1-ol at equilibrium Moles of propyl ethanoate at equilibrium Moles of water at equilibrium

DO NOT WRITE IN THIS AREA

(d) (i)	Write the expression for the equilibrium constant, K_c , for this reaction.		
	$CH_3COOH(I) + CH_3CH_2CH_2OH(I) \rightleftharpoons CH_3COOCH_2CH_2CH_3(I) + H_2O(I)$	(1)	DO NOT WRITE IN THIS AREA
(ii	 Explain why it is possible, in this case, to calculate K_c using equilibrium amounts in moles, rather than equilibrium concentrations. 	(2)	N THIS AREA
(ii	ii) Calculate the value of K_c . Give your answer to an appropriate number of significant figures.	(2)	DO NOT WRITE IN THIS AREA
			DO NOT WRITE IN THIS AREA

(e) The pink colour of the phenolphthalein fades after the end-point of the titration has been reached. Give a possible explanation for this observation. (2) (f) Explain what you could do to confirm that one week is sufficient time for the mixture to reach equilibrium. (2) (g) A student repeated the experiment, but left the mixture in a water bath at 40 °C until equilibrium was reached. $CH_{3}COOH(I) + CH_{3}CH_{2}CH_{2}OH(I) \rightleftharpoons CH_{3}COOCH_{2}CH_{2}CH_{3}(I) + H_{2}O(I)$ $\Delta_r H^{\oplus} = +21.4 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$ Deduce the effect, if any, on this student's value for K_c compared with that obtained in part (d)(iii). (2) (Total for Question 8 = 19 marks) **TOTAL FOR PAPER = 120 MARKS** 29

5 2 3 0 4 A 0 2 9

DO NOT WRITE IN THIS AREA

WRITE IN THIS AREA

BLANK PAGE

BLANK PAGE

	0 (8)	(10) 4.0 hetium	20.7	7.07	neon	10	39.9	Ar argon	83.8	Kr	krypton	36	131.3	Xe	54 54	[222]	ĥ	radon 86		P																																											
	7		19.0	<u> </u>	fluorine	6	35.5	e	70.0	Br	e	35	126.9		fodine 53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported but not fully authenticated	175	l n	lutetium	-	[257]	5	lawrencium 103																																				
	9	6 (16) 16.0	16.0 O sxygen 8			16.0 O sxygen 8			16.0 O oxygen			32.1	Sulfur	0 02	e e	selenium	34	127.6	Ъ	tellurium 52	[209]	8	polonium 84		116 have b Iticated	173	ę,	ytterbium	2	[254]	Ŷ																																
	2	(15)	14.0	2	nitrogen	7	31.0	Phosphorus	6 PZ	٩٩	arsenic	33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated	169	Ē	thulium	60	[256]	PW	101																																				
	4	(14)	12.0		carbon	6	28.1	Silicon	77 6	<u>ب</u>	germanium	32	118.7	Sn	50 E	207.2	P	lead 82		atomic num but not fu		atomic nun but not fu		Ъ	erbium	õ	[253]	Ē	100																																		
	e	(21)	10.8	0.0	poron	5	27.0	aluminium	13 60 7	e e	gallium	31	114.8	Ŀ	indium 49	204.4	Ħ	thallium 81		nents with	165	<u>የ</u>	Ĕ	6	[254]	Es	einsteinium 99																																				
ents								(64)	(17) 65 A	t.00	zinc	30	112.4	B	cadmium 48	200.6	Hg	mercury 80			163	2	dysprosium	8	[251]	ູບ	98 99																																				
The Periodic Table of Elements									(11) 63 E	5	copper	29	107.9	Ag	silver 47	197.0	ΡN	gold 79	[272]	Rg roentgenium 111	159	τp	te	60	[245]	BK	97																																				
le of			(10)					58.7). N	nickel	28	106.4	Р	palladium 46	195.1	£	platinum 78	[271]	bs demstadtum 110	157	В	gadolinium	4	[247]	5 U	96																																					
c Tab				Ę				(6)					(6)						(6)						(6)					(9) 58.9						(6)					(6)					ŝ	cobalt	27	102.9		45	192.2	F	iridium 77	[268]	Mt meitnerium 109	152	Ē	S	8		Am	americum 95
riodi		1.0 hydrogen						(8/	(0) 55 8	6 .	iron		101.1		ruthenium 44	190.2	õ	osmium 76	[277]	Hs hassium 108	150	Sm	3	70	[242]	Pu	puutomum 94																																				
he Pe								6	(/)	C.t.	chromium manganese	2 5	[98]	ų	technetium 43	186.2	Re	rhenium 75	[264]	bohrium 107	[147]	Pm	g	ō	[237]	Np Pu	93 93																																				
Ē					ž	umber		(9)	(0) E2 0	2. j	chromium	24	95.9	Wo	molybdenum 42	183.8	≯	tungsten 74	[266]	Sg seaborgium 106	144	PN	xaseodymium neodymium	8	~																																						
		Kev	ralative storic mass	etative atomic mas	name	atomic (proton) number		151	60 03		vanadium	23	92.9	q	niobium 41	180.9	Ta	tantalum 73	[262]	dubnium 105	141	Ч	praseodymium	<u>۲</u>	[231]	Pa	protactimum 91																																				
			Helos	ato		atomic			47.0	Ë	titanium	22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	Rf nutherfordium 104	140	e S	cerium	8	232	۲,	90																																				
			_					0	(c) VE 0		scandium	21	88.9	≻	yttrium 39	138.9	La*	lanthanum 57	[227]	Ac* actinium 89		es																																									
	2	0	0 0		beryllium	4	24.3	Mg magnesium	12	م	calcium	20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[226]	Ra radium 88		 Lanthanide series 	 Actinide series 																																								
	-	E	69	· · ·	lithium	3	23.0	Na sodium	11 20 1	. X	potassium	19	85.5	ď	rubidium 37	132.9	പ	caesium 55	[223]	Fr francium 87		 Lanth 	 Actin 																																								

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 5 2 3 0 4 A 0 3 2 3 2