Please check the examination details below before entering your candidate information			
Candidate surname		Other names	
Centre Number Candidate		E	
Time 2 hours 30 minutes	Paper reference	9CH0/03	
Chemistry Advanced PAPER 3: General and Practical Principles in Chemistry			
You must have: Scientific calculator, Data Booklet, rul	er	Total M	larks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 120.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- For the question marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over 🕨

BLANK PAGE

Answer ALL questions.

Write your answers in the spaces provided.

1 Relative atomic mass is an important concept in chemistry.

(a) Define the term relative atomic mass.

(2)

(b) A sample of neon consisted of three isotopes.

lsotope	Percentage abundance
²⁰ Ne	84.80
²¹ Ne	2.26
²² Ne	12.94

Calculate the relative atomic mass of neon in this sample. Give your answer to three significant figures.

(2)

DO NOT WRITE IN THIS AREA

(Total for Question 1 = 4 marks)

3

DO NOT WRITE IN THIS AREA

	by th	he p	procedure shown.	
	Step	1	The reaction mixture is transferred to an evaporating basin, heated gently and then left to crystallise.	
	Step) 2	The crystals are separated by gravity filtration.	
	Step	3	The crystals are then rinsed with a small amount of ice-cold water.	
	Step	4	The rinsed crystals are placed in a warm oven for 30 minutes.	
			colour of the cobalt(II) sulfate solution used is pink due to the complex $alt(II)$ ion, $[Co(H_2O)_6]^{2+}$.	
	E	Expl	ain why the solution is coloured.	(4)
	(ii) E	Expl	ain the shape of the cobalt(II) ion, $[Co(H_2O)_6]^{2+}$, using electron-pair repulsio	n theory. (3)
4				

Ammonium cobalt(II) sulfate is made by mixing aqueous solutions of

(a) Dry crystals of ammonium cobalt(II) sulfate, (NH₄)₂SO₄·CoSO₄·6H₂O, are obtained

ammonium sulfate and excess cobalt(II) sulfate.

particularly to the v	r carrying out Steps 3 and 4 of the procedure, referring words in bold.	(3)
		(-)
(b) The percentage yield o	f this reaction is 70.0%	
	ons, other than an incomplete reaction, why the yield is	
	טווז, טנוופו נוומוו מון וווכטוווטופנפ ופמכנוטוו, שווע נוופ עופוע וז	
less than 100%.	ons, other than an incomplete reaction, why the yield is	()
less than 100%.	ons, other than an incomplete reaction, why the yield is	(2)
less than 100%.	ons, other than an incomplete reaction, why the yield is	(2)
less than 100%.	ons, other than an incomplete reaction, why the yield is	(2)
less than 100 %.	ons, other than an incomplete reaction, why the yield is	(2)
less than 100%.		(2)
less than 100 %.	(Total for Question $2 = 12$	
less than 100 %.		

Y contains water of crystallisation. a) (i) A flame test is carried out on X. Describe how to carry out a flame test.	(3)
(a) (i) A flame test is carried out on X . Describe how to carry out a flame test.	(3)
Describe how to carry out a flame test.	(3)
(ii) The colour of the flame is yellow.	
Give the formula of the metal ion present in salt X .	(1)
(b) A sample of X is placed in a test tube and dissolved in deionised water. The solution is acidified with hydrochloric acid and barium chloride solution is added.	on
A white precipitate forms.	
(i) Give the formula of the anion present in X .	(1)
(ii) Deduce the formula of X , using your answers to (a)(ii) and (b)(i).	(1)

(c) **Y** is identified as hydrated potassium carbonate, $K_2CO_3 \cdot nH_2O$.

Two of the students were asked to determine the number of moles of water of crystallisation, n, in **Y** using the procedure shown:

- weigh a sample of hydrated **Y** into a pre-weighed crucible
- place a lid loosely on the crucible and heat it for five minutes to remove the water of crystallisation
- allow the crucible and lid to cool, remove the lid and then reweigh the crucible with its contents.

(i) The first student carried out the experiment but forgot to use the lid.

Explain how this mistake would affect the calculated value of *n*.

(ii) The second student carried out the experiment but heated the apparatus for only **one** minute.

Explain how this mistake would affect the calculated value of *n*.

(2)

(iii) In an accurate experiment, \boldsymbol{Y} is found to consist of 71.9% K_2CO_3 by mass.

Calculate the value of *n*.

(3)

(Total for Question 3 = 13 marks)

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- **4** This question is about the white solid barium carbonate.
 - (a) Barium carbonate decomposes under suitable conditions to form barium oxide and carbon dioxide.

 $BaCO_3(s) \rightarrow BaO(s) + CO_2(g) \qquad \Delta_r H^{\ominus} = +169.3 \text{ kJ mol}^{-1}$

Standard molar entropy data related to this reaction are shown.

Substance	Standard molar entropy, S [↔] /JK ⁻¹ mol ⁻¹
BaCO₃(s)	112.1
BaO(s)	70.4
CO ₂ (g)	213.6

(i) Show that barium carbonate is thermally stable at 298 K, using the data in the equation and in the table.

(5)

Explain whether or not this suggestion is valid.	(2)
(c) A white solid was thought to be barium carbonate. A student suggested that the presence of the carbonate ion could be tested for by adding a small amount of sulfuric acid.	
	(3)
(b) Explain whether magnesium carbonate is more or less thermally stable than barium carbonate.	
 (ii) Calculate the lowest temperature, in °C, at which it is thermodynamically feasible for barium carbonate to decompose. Give your answer to three significant figures. 	(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Explain the difference in the reactivity of bromine with benzene and with phenol.	
Include the type of reaction, the products that form, and any conditions required. Mechanisms for the reactions are not required.	
	(6)

××××××	
$\times \odot \times$	
$\times \odot \times$	
DO NOT WRITE IN THIS AREA	

O NOT WRITE IN THIS AREA	
$\times 0 \times$	
$\otimes \mathbf{M} \otimes$	
DO NOT WRITE IN THIS AREA	
$\times \square \times$	
	(Total for Question 5 = 6 marks)

- **6** An ester **Q** has the molecular formula $C_8H_{16}O_2$.
 - (a) When burned in excess oxygen, 1.879 g of **Q** formed 4.594 g of carbon dioxide and 1.879 g of water.

Show that the empirical formula of \mathbf{Q} is C₄H₈O.

(4)

(b) Data from the high resolution ¹H (proton) NMR spectrum of the ester **Q** are shown in the table.

Chemical shift (δ) / ppm	Splitting pattern of peak	Relative peak area
2.50	singlet	3
1.56	quartet	4
1.43	singlet	3
0.92	triplet	6

Part of the structure of Q is shown.

Complete the structure of **Q**. Justify your answer by linking the proton environments in your structure to the relative peak areas and the splitting pattern of the peaks.

(7)

0 H₃C 0

DO NOT WRITE IN THIS AREA

	15
	-
(Total for Question 6 = 11 m	narks)

.....

.....

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 6 7 0 9 5 A 0 1 6 3 6

(ii) Complete the table to show the information missing from the reaction scheme.

(6)

(iii) Complete the equation for the formation of the polymer from methyl methacrylate.

(2)

(b) Propanone can be formed from the fermentation of polysaccharides such as starch. The propanone can be separated from the fermentation mixture by distillation.

Draw the apparatus used in the laboratory for distillation of propanone from the reaction mixture.

(3)

DO NOT WRITE IN THIS AREA

(c)	Carbonyl compounds, such as propanone, react with 2,4-dinitrophenylhydrazine in solution (Brady's reagent) to form a precipitate which can be used to identify the compound.	
	The precipitate can be purified by recrystallisation.	
	Details of the recrystallisation process are shown.	
	Step 1 Dissolve the precipitate in the minimum volume of hot ethanol.	
	Step 2 Warm a filter paper and funnel in an oven for use in Step 3 .	
	Step 3 Filter the solution whilst still warm to remove any undissolved solids, using gravity filtration.	
	Step 4 Allow the filtrate to cool and recrystallise.	
	Step 5 Filter the crystals under reduced pressure.	
	Step 6 Rinse the crystals with a small amount of ice-cold ethanol.	
	Step 7 Dry the crystals between filter papers and leave in a desiccator.	
	(i) Explain why the filter paper and funnel are warmed in an oven before Step 3 .	(2)
	(ii) Explain how Steps 4 and 5 remove impurities from the crystalline product.	(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Detailed descriptions of practical proce	edures are not required.	
		(2)
	(Total for Question 7	' = 21 marks)

3 This question is abou		
	ment to determine the acid dissociation constar noic acid, CH ₃ COOH, of unknown concentration.	
similar concentra	e access to a pH meter and a solution of sodium ation to the acid. letermine <i>K</i> a from your results.	hydroxide of
include now to a	ietermine n _a nom your results.	(5)

(b) 500 cm^3 of a buffer solution of pH = 4.70 is required.

Calculate the volume of $0.800 \text{ mol dm}^{-3}$ sodium ethanoate solution and of $0.800 \text{ mol dm}^{-3}$ ethanoic acid needed to make this buffer.

 $[K_a \text{ for ethanoic acid} = 1.74 \times 10^{-5} \text{ mol dm}^{-3}]$

(3)

DO NOT WRITE IN THIS AREA

(c) Calculate the pH of the solution formed when 51.2 cm^3 of 0.927 mol dm⁻³ NaOH(aq) is mixed with 40.4 cm^3 of 0.370 mol dm⁻³ H₂SO₄(aq).

[lonic product of water $K_{\rm w} = 1.00 \times 10^{-14} \, \text{mol}^2 \, \text{dm}^{-6}$]

(6)

(Total for Question 8 = 14 marks)

	\sim						
	×.						
	⁄			١.,		S	
	\sim						
	×			7		2	
	⁄	Ż		١.,		5	
	11	ín,	è	Ś	è		
	×			2	ı	2	
∕`	2	÷	ń		٢	5	
	\sim	G	2	Ζ			
	×	C		7	h	2	
$^{\sim}$	л	ι.		ы	F	5	
×		2	9	٣			
	×						
×	À	í.	à		Ŕ	٩,	
\geq	\sim	G		۴	5		
	×I		ķ	÷	ù		
×			à	S	2	٩,	
\geq	\sim	r		27	h		
	×	64	2	2	,		
×	Z		2	5	2		
\geq	\sim	6	÷	4	I.		
	×			Я	ſ		
	2						
\sim	^.	4	4	÷	ı.	/	
	×1	ģ	5	2			
	2	4			b		
	×ų	15	ŝ	2	i.	2	
	Κ.	2	4	S	z	5	
	. 2	ς.		5	ŀ		
	×	ġ		÷1	K	2	
	7.	5	4	2	4	1	
	3	-	7	5	5		
	Χ.	2	2	2	I	2	
	~		2	7	ľ	5	
	2	<u>_</u>	2	4	3		
	×	P		И	I		
	, JI		,1		P		
	×	Ì	i	Ì	'n		
$^{\sim}$	4	5.	2	5	2	١.	
×	73	Ξ.			Ŗ		
	×.			2	2		
×	7	7	7	7	7	٩,	
\geq	\sim				2		
	×.	2	ĥ	2	I		
×	2		7		ľ		
\geq	n,	4	2	4	S		
	×	7		12	7		
×	à	í.		6	ŝ		
\geq	~				S		
	×	2	e	9	ø		
×	ો		a	'n	Ŕ	٩,	
\geq	~	Ľ			ø		
	×	2	r		1	5	
	2						
\sim	생	9	h	÷,		2	
	×		G	2	ø	5	
	J	5					
\sim	~1	1		×	L	2	
	Ζ,	5		2	ø		
	.2	C	2	5			
\sim	~1	Ì		Ħ	ı.	2	
	×			Ы	ſ	5	
	- 5	4	2	C			
			R		h.	2	
					۶	ς.	

Pineapple juice contains the weak acids citric acid ($C_6H_8O_7$) and ascorbic acid ($C_6H_8O_6$). 9 The amount of each compound in a sample of 150 cm³ of pineapple juice can be determined by titration. (a) Experiment **1** is designed to determine the total amount of acid. 10.0 cm³ samples of pineapple juice are transferred to separate conical flasks and titrated with a solution of sodium hydroxide of known concentration. The total amount of acid in the 150 cm³ sample of pineapple juice is 8.00×10^{-3} mol. (i) Give a reason why methyl orange would **not** be a suitable indicator to use in this titration. (1) (ii) A student did not notice an air bubble in the tip of the burette **before** carrying out one of their accurate titrations. During this titration, the air bubble escaped. Explain the effect this mistake would have on the value of this titre. (2)

(b) Experiment **2** is carried out to determine the amount of ascorbic acid ($C_6H_8O_6$) in the pineapple juice. An outline procedure for this experiment is given. Step 1 5.00 cm^3 of the pineapple juice is added to a conical flask. Step 2 Deionised water, a small amount of HCl(aq), a few crystals of potassium iodide, KI, and 3 drops of starch solution are also added to the flask. Step **3** The contents of the flask are swirled to ensure the KI dissolves fully. Step **4** The resultant mixture is titrated with a solution of potassium iodate(V), $KIO_3(aq)$, of concentration 0.00100 mol dm⁻³. The reactions that take place are $IO_3^{-}(aq) + 5I^{-}(aq) + 6H^{+}(aq) \rightarrow 3I_2(aq) + 3H_2O(l)$ $C_6H_8O_6(aq) + I_2(aq) \rightarrow C_6H_6O_6(aq) + 2H^+(aq) + 2I^-(aq)$ Only the ascorbic acid reacts with the iodine. (i) The end-point of the titration is when the starch changes colour. Explain how this occurs, including the colour change. (3)

(ii) The **total** amount of acid in the 150 cm³ sample is 8.00×10^{-3} mol. The mean titre in Experiment **2** using 5.00 cm^3 of pineapple juice is 9.50 cm^3 . Calculate the mass of **citric acid** in the 150 cm³ sample.

(5)

(c) While doing background research for the experiment, a student found that three other compounds, **D**, **E** and **F**, are often present in pineapple juice.

10	•	ogress of the reaction between iodine and propanone with an acid catalyst can wed in an experiment using a titrimetric method.	
	Proced	ure	
	Step 1	Mix 25 cm ³ of 1 mol dm ^{-3} aqueous propanone with 25 cm ³ of 1 mol dm ^{-3} sulfuric acid in a beaker. Both these reactants are in excess.	
	Step 2	Start the stop clock as 50 cm ³ of 0.02 mol dm ⁻³ iodine solution is added to the beaker. Mix the reactants thoroughly.	
	Step 3	Withdraw a 10.0 cm ³ sample of the reaction mixture, using a pipette, and transfer it to a conical flask.	
	Step 4	Add a spatula measure of sodium hydrogencarbonate, noting the exact time.	
	Step 5	Titrate the iodine present in the 10.0 cm ³ sample with 0.01 mol dm ⁻³ sodium thiosulfate solution, using starch indicator.	
	Step 6	Continue to withdraw 10.0 cm ³ samples about every two minutes, repeating Steps 4 and 5 with each sample.	
	(a) (i)	Explain why sodium hydrogencarbonate is added in Step 4 .	
			(2)

(ii) Write the **ionic** equation for the reaction that takes place during Step **4**. State symbols are not required.

(1)

(b) Some data from the experiment are shown.

Time sodium hydrogencarbonate is added / min	2.0	5.0	6.5	8.0	10.5	12.0
Volume of sodium thiosulfate / cm ³	19.2	15.5	14.0	12.1	9.5	7.2

(i) Plot a graph of the volume of sodium thiosulfate against the time the sodium hydrogencarbonate is added.

(2)

reaction i	ow the graph of volume of thiosulfate again s zero order with respect to iodine, I_2 .	(3)

P 6 7 0 9 5 A 0 3 0 3 6

(c) The overall rate equation for the reaction is rate = $k[H^+(aq)][CH_3COCH_3(aq)].$

(ii) The student stated that

'The hydrogen ions cannot be acting as a catalyst. One hydrogen ion is a reactant in Step **1** but two hydrogen ions are formed as products in Steps **1** and **3**.'

Explain whether or not this statement is valid.

(2)

(Total for Question 10 = 12 marks)

TOTAL FOR PAPER = 120 MARKS

BLANK PAGE

0 (8)	(0) ((18)	4.0 He	helium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	K	krypton 36	131.3	Xe	54 54	[222]	Rn	radon 86	.	De								
٢	•	L	(17)	19.0	Ŀ	fluorine 9	35.5	CI	cntorme	79.9	Br	bromine 35	126.9	I	53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported but not fully authenticated		175	ר ר	iuterium 71	[257]	Ļ	lawrencium 103	
Ŷ	D		(16)	16.0	0	oxygen 8	32.1	S	suirur 16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[209]	Ъ	polanium 84	-	-116 nave I nticated		173	٩ ۲	ytterbium 70	[254]	No	nobelium 102	
ſ	ר		(15)	14.0	z	nitrogen 7	31.0	٩	pnospnorus 15	74.9		arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83	-	tomic numbers 112-116 nav but not fully authenticated		169	٤ ۲	thuttum	[256]	ΡW	mendelevium 101	
4	t		(14)	12.0	υ	carbon 6	28.1	Si	14	72.6	e	germanium 32	118.7	Sn	20 ti	207.2	Pb	lead 82		but not		167	Ъ,		[253]		fermium 100	
~	n		(13)	10.8	В	boron 5	27.0	AI	auminium 13	69.7	Ga	gallium 31	114.8	IJ	indium 49	204.4	F	thallium 81		nents with				noumium 67	[254]	Es	einsteinium 99	
lents									(12)	65.4	Zn	zinc 30	112.4	P C	cadmium 48	200.6	Hg	mercury 80				163	Q	aysprosium 66	[251]	Ç	californium 98	
Elem									(11)	63.5	СЦ	copper 29	107.9	Ag	silver 47	197.0	ΡN	gold 79	[272]	Kg roentgenium 111		159	d T	terbium 65	[245]	Bk	berkelium 97	
le of									(10)	58.7	ïŻ	nickel 28	106.4	Pd	palladium 46	195.1	Ł	platinum 78		US Jamstadtium 110	11	157	Ъ	gadounum 64	[247]	с С	curium 96	
c lab									(6)	58.9	ပိ	cobalt 27	102.9	Rh	rhodium 45	192.2	Ir	iridium 77	[268]	MC meitnerium		152		europium 63	[243]	Am	americium 95	
ipoli		1.0 Hudroden	1						(8)	55.8		iron 26	101.1		ruthenium 44	190.2	õ	osmium 76	[277]	HS hassium 108		150		samanum 62	[242]	Pu	plutonium 94	
The Periodic Table of Elements									(2)	54.9	Mn	manganese 25	[86]	LC L	molybdenum technetium 42 43	186.2	Re	rhenium 75		BN bohrium 107	5	[147]	Pm	prometinium 61	[237]	dN	neptunium 93	
=				mass	nass ol	umber]		(9)	52.0		chromium 24	95.9	Wo	molybdenum 42	183.8	≥	tungsten 74	[266] 5	Seaborgium	8	144	PN	59 60 61 61	238		uranium 92	
			Key	relative atomic mass	atomic symbol	name atomic (proton) number	:		(2)	6.02	>	vanadium 23	92.9	Nb	niobium 41	180.9	Ta	tantalum 73	_	dubnium 105	20-	141	Pr	prasecodymium 59	[231]	Ра	protactinium 91	
				relati	ato	atomic			(4)	47.9	Ϊ	titanium 22	91.2	Zr	zirconium 40	178.5	Hf	hafnium 72	[261]	rutherfordium 104	5	140	Ce	58	232	ЧT	thorium 90	
									(3)	45.0	Sc	scandium 21	88.9	≻:	yttrium 39	138.9	La*	lanthanum 57	[227]	AC" actinium 89			es		-			•
~	7		(2)	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[226]	Ka radium 88	3		* Lanthanide series	* Actinide series				
÷	-		(1)	6.9	Li	lithium 3	23.0	Na	sodium 11	39.1	¥	potassium 19	85.5	Rb	rubidum 37	132.9	S	caesium 55	[223]	FF francium 87	5	:	* Lanth	* Actini				