wjec cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL CHEMISTRY - UNIT 4 1410U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only

- ecf = error carried forward
- bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Questi	on		Marking da	taila			Marks a	vailable		
Questi			Marking de	lans	A01	AO2	AO3	Total	Maths	Prac
1	C	⁵ 9H ₁₈ O ₆				1		1		
2	b	utanoic acid			1			1		1
	a	ccept methylprop	anoic acid / pentanec	lioic acid						
3		Ductory(c)	0							
		Proton(s)	Splitting pattern	Relative peak area ratio						
		а	singlet	1						
		b	singlet	2		2		2		
4	le	east acidic B	C A mo	ost acidic		1		1		
5		- (despite the lac scend in order of		neasurement) the spots will	1			1		
6	N	aOH / I₂ or NaO	CI / KI			1				
		entan-2-one give hange with 1-phe		ipitate and no observable		1		2		2

Ques	stion	Marking details			Marks a	available		
Quea	SUUT	 Marking details	A01	AO2	AO3	Total	Maths	Prac
7	(a)	award (1) for any of following $ \begin{array}{c} $		1		1		
	(b)	H = H = H = H = H = H = H = H = H = H =			1	1		
		Section A total	2	7	1	10	0	3

Section B

	Ques	tion		Marking dataila			Marks a	vailable		
	Ques	tion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
8	(a)	(i)		•CH ₂ COOH			1	1		
		(ii)	1	$\begin{array}{l} \mbox{CH}_3 \mbox{COOH} \to \mbox{CICH}_2 \mbox{COOH} \\ 60.0 \to 94.5 \\ 89.0 \to 140.2 \ (1) \\ \mbox{increase in mass } 140.2 - 89.0 = 51.2 \ \mbox{g} \ \ (1) \\ \mbox{accept } 51 \ \mbox{g} \end{array}$		1	1	2		
			II	$\begin{array}{l} CH_{3}COOH \rightarrow CH_{2}(NH_{2})COOH\\ 60.0 \rightarrow 75.0\\ 89.0 \rightarrow 111.3 \ (1)\\ \\ percentage yield = \frac{49.2 \times 100}{111.3} = 44.3 \ (1)\\ \\ answer \ \textbf{must} \ be \ to \ 3 \ significant \ figures \end{array}$		1		2	1	
			111	it exists as zwitterions / ionic compound (1) accept correctly drawn correct formula of zwitterion ionic compounds are not (generally) soluble in covalent solvents (1)	1		1	2		
	(b)			it does not contain a chiral centre / asymmetric carbon atom	1			1		

Question	Marking dataila			Marks a	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(C)	H = C = C = N = C = COOH $H = H = H = H$ $H = H = H$ $H = H = H$ $H = H$ $H = H$ $H = H$		1		1		
(-0)							
(d)	stoichiometric ratio is 1:1 (1) using pV = nRT volume = $\frac{0.300 \times 8.31 \times 373}{9.8 \times 10^4}$ (1) 9.49 dm ³ (1) must be given in dm ³	1	2		3	2	
(e)	the (sodium) salt of the acid is formed		1		1		1
	Question 8 total	3	7	3	13	3	1

	Ques	tion		Marking dataila			Marks a	available		
	Ques	uon		Marking details	AO1	AO2	AO3	Total	Maths	Prac
9	(a)	(i)		 award (1) for either of following the groups bonded to each carbon atom of the C=C must be the same it must be a symmetrical alkene 			1	1		
		(ii)		orange / red / yellow	1			1		1
		(iii)	I	 award (1) for any of following it does not contain a C group it is not an aldehyde 			1	1		
			II	it is not an aldehyde, therefore cannot be $CH_3(CH_2)_3CHO$ or $CH_3(CH_2)_2CHO$ (1) accept it must be $CH_3(CH_2)_3C$ O or CH_3CH_2C O melting temperature cannot be higher than the literature value therefore it cannot be $CH_3(CH_2)_3C$ CH_3 (1)	1					
				therefore it cannot be $CH_3(CH_2)_3C$ (1) compound U must be CH_3CH_2C (1) ecf possible		1		3		

Ques	tion	Marking dataila			Marks	available		
Ques		Marking details	AO1	AO2	AO3	Total	Maths	Prac
	(iv)	$\begin{array}{c c} CH_{3}CH_{2} \\ CH_{3} \\ CH_{3}$		1	1	2		
(b)	(i)	 award (1) for any of following renewable source does not use fossil fuels method 2 gives two products (or biodiesel and propan-1,2,3-triol) availability of raw materials 	1			1		
	(ii)	 award (1) each for any two of following temperature conditions pressure used yield rate separation of products 	2			2		2

Question	Marking dataila			Marks a	available		
Question	Marking details	A01	AO2	AO3	Total	Maths	Prac
(iii)	award (1) for diagram and biodiesel labelled as top layer biodiesel propane-1,2,3-triol award (1) for name of separating funnel	1		1	2		2
(iv)	$CH_{2} = CH \xrightarrow{\delta^{+}}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} \xrightarrow{H}_{i \in \overline{C}} CH_{2} = CH \xrightarrow{C}_{i \in \overline{C}} CH $	1	2		2		2
	Question 9 total	7	4	4	15	0	5

	Ques	tion	Marking dataila	Marks available					
	Ques	uon	Marking details	AO1	AO2	AO3	Total	Maths	Prac
10	(a)	(i)	 award (1) for either of following sodium nitrite / nitrate(III) / NaNO₂ and HCI / hydrochloric acid nitrous acid / nitric(III) acid / HNO₂ / HONO 	1			1		1
		(ii)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$		1		1		
		(iii)	$f = \frac{c}{\lambda} \tag{1}$	1					
			$7.32 \times 10^{14} \text{ Hz}$ (1)		1		2	2	
	(b)	(i)	number of moles = $\frac{0.0075 \times 250}{1000}$ = 1.875 × 10 ⁻³ (1)						
			mass required = $272 \times 1.875 \times 10^{-3} = 0.51$ g (1)		2		2	1	
		(ii)	$\frac{1.44}{1.03} = \frac{k \times 0.0096}{k \times c} $ (1)						
			$c = \frac{0.0096 \times 1.03}{1.44} = 6.87 \times 10^{-3} / 0.00687 / 0.0069 \text{ mol dm}^{-3} $ (1)		2		2	2	
			accept alternative method						
			k = 150 (1)						
			c = $6.87 \times 10^{-3} / 0.00687 / 0.0069 \text{ mol dm}^{-3}$ (1)						

0	tion	Marking dataila			Marks a	available)		
Ques	lion	Marking details	AO1	AO2	AO3	Total	Maths	Prac	
(c)	(i)	$CH_{3}COOH + NH_{2}CONH_{2} \rightarrow CH_{3}CONH_{2} + CO_{2} + NH_{3}$		1		1			
	(ii)	it contains a <u>nitrogen</u> atom that has a lone pair of electrons / is a proton acceptor		1		1			
	(iii)	the C=O absorption at 1650-1750 cm ⁻¹ decreases / the N—H absorption at 3300-3500 cm ⁻¹ decreases (1)							
		the C=N absorption at 2100-2250 cm ⁻¹ increases (1)		2		2			
	(iv)	 award (1) for any of following the benzene ring / negative electron cloud is not (easily) susceptible to attack by nucleophiles the benzene ring / negative electron cloud is usually attacked by electrophiles the C—CI bond in chlorobenzene is stronger than the C—CI aliphatic bond 			1	1			
		Question 10 total	2	10	1	13	5	1	

Ques	tion	Marking details	Marks available							
Ques			AO1	AO2	AO3	Total	Maths	Prac		
11 (a)	(i)	Indicative content • flasks or beakers - suitable sizes • use of a fume cupboard • use of a thermometer and method of maintaining 60 °C temperature • stirring • filtration • filtered crystals washed with water • until filtrate is colourless (AO3) • reaction flask washed with water and contents added to filtering • apparatus • crystals removed and dried in a warm oven / at room temperature / below the melting temperature of the product (AO3) 5-6 marks Specific detail from the question has been used; reference to apparatus s washing the filtered crystals • The candidate constructs a relevant, coherent and logically structured account in sustained and substantiated line of reasoning is evident and scientific convention 3-4 marks Mainly generic description; use of a fume cupboard The candidate constructs a coherent account including many of the key element the linking of key points and use of scientific conventions and vocabulary is gene 1-2 marks Reference to reaction and filtration stages The candidate attempts to link relevant points from the indicative content. Cohe material. There is some evidence of appropriate use of scientific conventions ar	4 sizes, use ncluding ke ns and voo ts of the in erally sour	e of a fum ey elemen cabulary is dicative co dic dicative co dic dicative co	2 e cupboa ts of the in s used acc ontent. So	6 ard for the ndicative of surately the	e reaction content. A roughout.	6 and dent in		

Question	Marking dataila	Marks available							
	Marking details	A01	AO2	AO3	Total	Maths	Prac		
(ii)	mole ratio 1:1 moles of 2-hydroxybenzoic acid used = $\frac{4.00}{138.06}$ = 0.0290 (1)								
	theoretical moles of nitroacid = 0.290								
	theoretical mass of nitroacid = $5.306 / 5.31 g$ (1)								
	percentage yield is 41 therefore								
	mass obtained = $\frac{5.31 \times 41}{100}$ = 2.18 g (1)		3		3	2			
(iii)	relative mass of compound J without two X groups $(C_7H_6O_3) = 136$ relative mass of two X groups is $228 - 136 = 92$								
	each X group has mass of 46 (1)								
	 award (1) for either of following X must contain 2 oxygen atoms (as 7 in total) atoms therefore remainder is 14 - other atom must be nitrogen and X is NO₂ 			2	2				
	• structure of compound J OH O_2N OH NO_2								
(iv)	lower temperature / lower concentration HNO_3 / lower volume of aqueous HNO_3 / less heating time			1	1				
(b)	2-hydroxybenzenecarboxylic acid will react with NaHCO ₃ / Na ₂ CO ₃ to give effervescence	1			1		1		
	Question 11 total	5	3	5	13	2	7		

	0	4 10 m		Mauking dataila			Marks a	vailable		i
	Ques	uon	_	Marking details	AO1	AO2	AO3	Total	Maths	Prac
12	(a)	(i)		$ \begin{array}{c} & & & \\ & & & \\ \hline & & & \\ \bullet & $	1			1		
		(ii)		$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & $						
				award (1) for correct formulae award (1) for balancing only if formulae are correct			2	2		
		(iii)		in condensation polymerisation a small molecule / H_2O / HCl is eliminated but no elimination in addition polymerisation	1			1		

Marking details	Marks available							
	AO1	AO2	AO3	Total	Maths	Prac		
5 environments correctly identified from the ¹³ C NMR spectrum and indicated on drawn structure of 1,3-dimethylbenzene (1)	1							
signals at 126-136 δ identified as aromatic (1)			2	3				
				5				
must be an aromatic compound so at least 6 carbon atoms (1)								
molecular formula therefore likely to be $C_8H_6O_2$ (1)		2						
there are 2 additional carbon atoms therefore likely to be a dialdehyde or cannot be acid-aldehyde or alcohol-aldehyde or acid-alcohol as molecular formula does not fit (1)								
made by partial oxidation (of each methyl group) (1)								
formula is $\begin{pmatrix} H \\ O \end{pmatrix} = C - \begin{pmatrix} O \\ O \end{pmatrix} + C \begin{pmatrix} H \\ O \end{pmatrix} $ (1)			3	5				
	5 environments correctly identified from the ¹³ C NMR spectrum and indicated on drawn structure of 1,3-dimethylbenzene (1) signals at 126-136 δ identified as aromatic (1) $1 + 5 + 4 + 5 + 1 + 5 + 4 + 5 + 1 + 5 + 4 + 5 + 1 + 5 + 4 + 5 + 1 + 5 + 4 + 5 + 1 + 5 + 4 + 5 + 1 + 5 + 4 + 5 + 1 + 5 + 4 + 5 + 1 + 5 + 4 + 5 + 1 + 5 + 4 + 5 + 1 + 5 + 5$	5 environments correctly identified from the ¹³ C NMR spectrum and indicated on drawn structure of 1,3-dimethylbenzene (1) 1 signals at 126-136 δ identified as aromatic (1) 1 5 signal at 20 δ identified as aliphatic / CH ₃ (1) 1 1 must be an aromatic compound so at least 6 carbon atoms (1) 1 1 molecular formula therefore likely to be C ₈ H ₆ O ₂ (1) 1 there are 2 additional carbon atoms therefore likely to be a dialdehyde or cannot be acid-aldehyde or alcohol-aldehyde or acid-alcohol as molecular formula does not fit (1) 1 made by partial oxidation (of each methyl group) (1) 1	AO1 AO2 5 environments correctly identified from the ¹³ C NMR spectrum and indicated on drawn structure of 1,3-dimethylbenzene (1) 1 signals at 126-136 δ identified as aromatic (1) 1 1 signal at 20 δ identified as aliphatic / CH ₃ (1) 2 3 must be an aromatic compound so at least 6 carbon atoms (1) 2 2 molecular formula therefore likely to be C ₈ H ₆ O ₂ (1) 2 2 there are 2 additional carbon atoms therefore likely to be a dialdehyde or cannot be acid-aldehyde or alcohol-aldehyde or acid-alcohol as molecular formula does not fit (1) 2 made by partial oxidation (of each methyl group) (1) H H	Marking detailsAO1AO2AO35 environments correctly identified from the 13 C NMR spectrum and indicated on drawn structure of 1,3-dimethylbenzene (1)111signals at 126-136 δ identified as aromatic (1) $1 = 5 + 4 + 5 + 1 = 1 = 2 + 3 = 2 = 3 = 2 = 2 = 3 = 2 = 2 = 3 = 2 = 2$	Marking detailsAO1AO2AO3Total5 environments correctly identified from the 13 C NMR spectrum and indicated on drawn structure of 1,3-dimethylbenzene (1)111signals at 126-136 δ identified as aromatic (1) $1 - 5 - 4 - 5 - 1$ 123signal at 20 δ identified as aliphatic / CH ₃ (1) $2 - 3 - 2$ 23must be an aromatic compound so at least 6 carbon atoms (1)223molecular formula therefore likely to be C ₈ H ₆ O ₂ (1)22there are 2 additional carbon atoms therefore likely to be a dialdehyde or cannot be acid-aldehyde or alcohol-aldehyde or acid- alcohol as molecular formula does not fit (1)2made by partial oxidation (of each methyl group) (1)HH	Marking detailsAO1AO2AO3TotalMaths5 environments correctly identified from the 13 C NMR spectrum and indicated on drawn structure of 1,3-dimethylbenzene (1)1111signals at 126-136 δ identified as aromatic (1) $1 - 5 - 4 - 5 - 1$ 123signal at 20 δ identified as aliphatic / CH ₃ (1) $2 - 3 - 2$ 23must be an aromatic compound so at least 6 carbon atoms (1)223molecular formula therefore likely to be C ₈ H ₆ O ₂ (1)244there are 2 additional carbon atoms therefore likely to be a dialdehyde or cannot be acid-aldehyde or alcohol-aldehyde or acid- alcohol as molecular formula does not fit (1)244HHHHH444		

Question	Marking dataila	Marks available						
Question	Marking details	A01	AO2	AO3	Total	Maths	Prac	
(b) (i)	 award (1) for any of following phosphorus(III) chloride / phosphorus trichloride / PCl₃ phosphorus(V) chloride / phosphorus pentachloride / PCl₅ sulfur dichloride oxide / thionyl chloride / SOCl₂ 	1			1		1	
(ii)	71g chlorine in 239.1 g decanedioyl dichloride (1) 0.977g chlorine in $\frac{239.1}{71} \times 0.977 = 3.29$ g dichloride percentage purity = $\frac{3.29}{3.50} \times 100 = 94.0$ (1)		1					
()				1	2	2		
(iii)	moisture/water gained entry to the bottle and hydrolysed the decanedioyl dichloride when it was previously opened			1	1		1	
	Question 12 total	4	3	9	16	2	2	

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	2	7	1	10	0	3
8	3	7	3	13	3	1
9	7	4	4	15	0	5
10	2	10	1	13	5	1
11	5	3	5	13	2	7
12	4	3	9	16	2	2
Totals	23	34	23	80	12	19

1410U40-1 WJEC GCE A Level Chemistry - Unit 4 MS S19/DM