Surname	;
---------	---

Centre Number

wjec cbac

Other Names

GCE A LEVEL

1410U50-1E

S19-1410U50-1E

CHEMISTRY – A2 unit 5 **Practical Methods and Analysis Task**

FRIDAY, 10 MAY 2019 - MORNING

1 hour

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	13			
2.	8			
3.	9			
Total	30			

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- · calculator, pencil and ruler;
- Data Booklet supplied by WJEC.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer all questions in the spaces provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 30.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

Answer all questions.

1. Compound **A** in the equation below can be prepared in the laboratory by nitration of methyl benzenecarboxylate using a nitrating mixture of concentrated nitric acid and concentrated sulfuric acid.

benzenecarboxylate

compound A

A sample of compound **A** was prepared as follows.

Stage 1

5.0 cm³ of methyl benzenecarboxylate was placed in a dry 100 cm³ conical flask and 8 cm³ of concentrated sulfuric acid was added with swirling to ensure thorough mixing. The flask was then cooled by partially immersing it in an ice-water bath.

Stage 2

A nitrating mixture was prepared by adding 3 cm³ of concentrated nitric acid to a dry beaker and cooling by partially immersing it in an ice-water bath. Then 3 cm³ of concentrated sulfuric acid was added slowly, with swirling, and the mixture was then allowed to cool for 10 minutes.

Stage 3

The nitrating mixture was then added drop-wise to the contents of the conical flask. The flask was swirled as the nitrating mixture was added and the temperature of the reaction mixture kept below 5° C.

Stage 4

Once addition was complete, the reaction mixture was kept at room temperature for a further 15 minutes before it was poured onto a small amount of crushed ice in a beaker. Solid compound **A** was formed.

Examiner only Suggest why the reaction mixture was cooled during stage 3. (a) [1] Compound A is very much more soluble in hot ethanol than it is in cold ethanol. (b) Describe how you would purify the sample of compound A. [3] 1410U501E 03 (C) After purification 4.56 g of compound **A** was isolated. Calculate the percentage yield of this reaction. [4] (density of methyl benzenecarboxylate is $1.08 \,\mathrm{g}\,\mathrm{cm}^{-3}$)

3

Percentage yield =%

Examiner only $C_8H_7NO_4$ has a number of different isomers. Three of them are shown below. 0 С OCH₃ compound A NO_2 0 0 С С HO OH 5-aminobenzene-1,3-dicarboxylic acid NH_2 0 С CH₃ 1-(4-hydroxy-3-nitrophenyl)ethanone HO NO_2 State two chemical tests that will give a positive result for (i) 5-aminobenzene-1,3-dicarboxylic acid but not for compound A. Give the reagent(s) and observation(s) for a positive test. [2] Test 1 Reagent(s)

4

Test 2

(d)

Reagent(s) Observation(s)

Observation(s)

Examiner only (ii) State three chemical tests that will give a positive result for 1-(4-hydroxy-3-nitrophenyl)ethanone but not for compound A. Give the reagent(s) and observation(s) for a positive test. [3] Test 1 Reagent(s) Observation(s) Test 2 Reagent(s) Observation(s) Test 3 Reagent(s) Observation(s)

5

1410U501E 05

			-		
You are s	supplied with four	unlabelled aque	eous solutions conta	aining the following specie	es.
	CO3 ²⁻	I_	Cl ₂	S ₂ O ₃ ²⁻	
	carbonate	iodide	chlorine	thiosulfate	
You are a	also provided with	the following re	agents.		
• dil	ute H ₂ SO ₄				
• Ag	INO ₃ (aq)				
Devise a	scheme whereby	γ all four of the ι	inlabelled solutions	could be positively ider	tified.
You shou	uld include observ	ations and ioni	c equations for any	reactions occurring.	[8]

6

BLANK PAGE

7

3. A solid mixture contains sodium carbonate, sodium hydrogencarbonate and an unreactive impurity. It is known to contain 62.3% by mass of sodium carbonate.

A student prepared a solution of the solid mixture by dissolving 8.72 g of it in water, transferring the solution into a 500 cm^3 volumetric flask and making up to the mark with deionised water. The solution was shaken vigorously and labelled as solution **X**.

The percentage by mass of sodium hydrogencarbonate in the solid mixture was then determined by two different methods.

Method 1: Titration

- 25.0 cm³ of solution **X** was transferred into a conical flask and 3-5 drops of phenolphthalein indicator added.
- At the phenolphthalein end-point (indicator colour change pink to colourless) the following reaction is complete.

 $Na_2CO_3(aq) + HCI(aq) \longrightarrow NaHCO_3(aq) + NaCI(aq)$

- 0.196 mol dm⁻³ hydrochloric acid was added from a burette whilst swirling, until the first permanent colour change occurred. The volume of hydrochloric acid used (volume V_1) was recorded.
- 3-5 drops of methyl orange indicator were added to the solution in the conical flask.
- At the methyl orange end-point (indicator colour change yellow to pink) the following reaction is complete.

 $NaHCO_3(aq) + HCI(aq) \longrightarrow NaCI(aq) + H_2O(I) + CO_2(g)$

- The titration was continued with more of the hydrochloric acid added from the burette whilst swirling, until the first permanent colour change occurred. The **additional volume** of hydrochloric acid used (volume V_2) was recorded.
- After carrying out one rough titration, the titration was repeated several times and mean values for V₁ and V₂ calculated.

Results

- Mean volume \mathbf{V}_1 of hydrochloric acid used = 13.10 cm³ Mean volume \mathbf{V}_2 of hydrochloric acid used = 20.80 cm³ •
- •

(a)	Why	did the student repeat the titration? [1]	Examiner only
(b)	(i)	Explain why the difference between volume V_2 and V_1 represents the volume of acid required to react with the original sodium hydrogencarbonate in the solid mixture. [1]	
	(ii)	Use the difference between volume V_2 and V_1 to calculate the percentage by mass of sodium hydrogencarbonate in the original solid mixture. [3]	

10

Percentage by mass =%

Method 2: Gas collection

- 25.0 cm³ of solution X was transferred to a conical flask and excess hydrochloric acid added.
- 99.7 cm³ of carbon dioxide gas was formed and collected in a gas syringe.

(Assume the reaction was carried out at 298K and 1 atm pressure)

(c) (i) The original solid mixture contained 62.3% by mass of sodium carbonate. Of the 99.7 cm³ of carbon dioxide gas produced in this reaction, calculate the volume produced by the reaction between hydrochloric acid and the sodium carbonate in 25.0 cm³ of solution X.

Volume = cm³

(ii) Hence, calculate the percentage by mass of sodium hydrogencarbonate in the original solid mixture. [2]

Percentage by mass =%

9

END OF PAPER

For continuation only.	Examiner only
© WJEC CBAC Ltd. (1410U50-1E)	