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1 Find ä (x + 1

x
)2

dx. [3]

2 In the expansion of (1 + ax)6, where a is a constant, the coefficient of x is −30. Find the coefficient

of x3. [4]

3 Functions f and g are defined for x ∈ > by

f : x  → 2x + 3,

g : x  → x2 − 2x.

Express gf(x) in the form a(x + b)2 + c, where a, b and c are constants. [5]

4 (i) Prove the identity
sin x tan x

1 − cos x
≡ 1 + 1

cos x
. [3]

(ii) Hence solve the equation
sin x tan x

1 − cos x
+ 2 = 0, for 0◦ ≤ x ≤ 360◦. [3]
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The diagram shows a pyramid OABC with a horizontal base OAB where OA = 6 cm, OB = 8 cm and

angle AOB = 90◦. The point C is vertically above O and OC = 10 cm. Unit vectors i, j and k are

parallel to OA, OB and OC as shown.

Use a scalar product to find angle ACB. [6]

6 (a) The fifth term of an arithmetic progression is 18 and the sum of the first 5 terms is 75. Find the

first term and the common difference. [4]

(b) The first term of a geometric progression is 16 and the fourth term is 27
4

. Find the sum to infinity

of the progression. [3]
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7 A function f is defined by f : x  → 3 − 2 tan(1
2
x) for 0 ≤ x < π.

(i) State the range of f. [1]

(ii) State the exact value of f(2
3
π). [1]

(iii) Sketch the graph of y = f(x). [2]

(iv) Obtain an expression, in terms of x, for f−1(x). [3]

8

x cm

x cmy cm

The diagram shows a metal plate consisting of a rectangle with sides x cm and y cm and a quarter-circle

of radius x cm. The perimeter of the plate is 60 cm.

(i) Express y in terms of x. [2]

(ii) Show that the area of the plate, A cm2, is given by A = 30x − x2. [2]

Given that x can vary,

(iii) find the value of x at which A is stationary, [2]

(iv) find this stationary value of A, and determine whether it is a maximum or a minimum value. [2]

[Questions 9, 10 and 11 are printed on the next page.]
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The diagram shows two circles, C
1

and C
2
, touching at the point T . Circle C

1
has centre P and radius

8 cm; circle C
2

has centre Q and radius 2 cm. Points R and S lie on C
1

and C
2

respectively, and RS is

a tangent to both circles.

(i) Show that RS = 8 cm. [2]

(ii) Find angle RPQ in radians correct to 4 significant figures. [2]

(iii) Find the area of the shaded region. [4]

10 The equation of a curve is y = 3 + 4x − x2.

(i) Show that the equation of the normal to the curve at the point (3, 6) is 2y = x + 9. [4]

(ii) Given that the normal meets the coordinate axes at points A and B, find the coordinates of the

mid-point of AB. [2]

(iii) Find the coordinates of the point at which the normal meets the curve again. [4]

11 The equation of a curve is y = 9

2 − x
.

(i) Find an expression for
dy

dx
and determine, with a reason, whether the curve has any stationary

points. [3]

(ii) Find the volume obtained when the region bounded by the curve, the coordinate axes and the

line x = 1 is rotated through 360◦ about the x-axis. [4]

(iii) Find the set of values of k for which the line y = x + k intersects the curve at two distinct points.

[4]
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