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1 Find the term independent of x in the expansion of (x −
1

x2
)9

. [3]

2 Points A, B and C have coordinates (2, 5), (5, −1) and (8, 6) respectively.

(i) Find the coordinates of the mid-point of AB. [1]

(ii) Find the equation of the line through C perpendicular to AB. Give your answer in the form

ax + by + c = 0. [3]

3 Solve the equation 15 sin2 x = 13 + cos x for 0◦ ≤ x ≤ 180◦. [4]

4 (i) Sketch the curve y = 2 sin x for 0 ≤ x ≤ 2π. [1]

(ii) By adding a suitable straight line to your sketch, determine the number of real roots of the

equation

2π sin x = π − x.

State the equation of the straight line. [3]

5 A curve has equation y =
1

x − 3
+ x.

(i) Find
dy

dx
and

d2y

dx2
. [2]

(ii) Find the coordinates of the maximum point A and the minimum point B on the curve. [5]

6 A curve has equation y = f(x). It is given that f ′(x) = 3x2 + 2x − 5.

(i) Find the set of values of x for which f is an increasing function. [3]

(ii) Given that the curve passes through (1, 3), find f(x). [4]
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The diagram shows the function f defined for 0 ≤ x ≤ 6 by

x  → 1
2
x2 for 0 ≤ x ≤ 2,

x  → 1
2
x + 1 for 2 < x ≤ 6.

(i) State the range of f. [1]

(ii) Copy the diagram and on your copy sketch the graph of y = f−1(x). [2]

(iii) Obtain expressions to define f−1(x), giving the set of values of x for which each expression is

valid. [4]

8
A B

CD

P

Q

The diagram shows a rhombus ABCD. Points P and Q lie on the diagonal AC such that BPD is an

arc of a circle with centre C and BQD is an arc of a circle with centre A. Each side of the rhombus

has length 5 cm and angle BAD = 1.2 radians.

(i) Find the area of the shaded region BPDQ. [4]

(ii) Find the length of PQ. [4]
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9 (a) A geometric progression has first term 100 and sum to infinity 2000. Find the second term. [3]

(b) An arithmetic progression has third term 90 and fifth term 80.

(i) Find the first term and the common difference. [2]

(ii) Find the value of m given that the sum of the first m terms is equal to the sum of the first

(m + 1) terms. [2]

(iii) Find the value of n given that the sum of the first n terms is zero. [2]

10

A

B

O

C

The diagram shows triangle OAB, in which the position vectors of A and B with respect to O are

given by

−−→
OA = 2i + j − 3k and

−−→
OB = −3i + 2j − 4k.

C is a point on OA such that
−−→
OC = p

−−→
OA, where p is a constant.

(i) Find angle AOB. [4]

(ii) Find
−−→
BC in terms of p and vectors i, j and k. [1]

(iii) Find the value of p given that BC is perpendicular to OA. [4]
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y x= 9 –
3

y =
8

x3

The diagram shows parts of the curves y = 9 − x3 and y =
8

x3
and their points of intersection P and Q.

The x-coordinates of P and Q are a and b respectively.

(i) Show that x = a and x = b are roots of the equation x6 − 9x3 + 8 = 0. Solve this equation and

hence state the value of a and the value of b. [4]

(ii) Find the area of the shaded region between the two curves. [5]

(iii) The tangents to the two curves at x = c (where a < c < b) are parallel to each other. Find the

value of c. [4]
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