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1 (i) Prove the identity tan2
θ − sin2

θ ≡ tan2
θ sin2

θ. [3]

(ii) Use this result to explain why tan θ > sin θ for 0◦ < θ < 90◦. [1]

2 Relative to an origin O, the position vectors of the points A, B and C are given by

−−→
OA = ( 2

−1

4

),
−−→
OB = ( 4

2

−2

) and
−−→
OC = ( 1

3

p

).

Find

(i) the unit vector in the direction of
−−→
AB, [3]

(ii) the value of the constant p for which angle BOC = 90◦. [2]

3 The first three terms in the expansion of (1 − 2x)2(1 + ax)6, in ascending powers of x, are 1 − x + bx2.

Find the values of the constants a and b. [6]

4 (i) Solve the equation sin 2x + 3 cos 2x = 0 for 0◦ ≤ x ≤ 360◦. [5]

(ii) How many solutions has the equation sin 2x + 3 cos 2x = 0 for 0◦ ≤ x ≤ 1080◦? [1]

5

O
x

y

A

1 B (6, 1)
x = – 2

8

y2

The diagram shows part of the curve x = 8

y2
− 2, crossing the y-axis at the point A. The point B (6, 1)

lies on the curve. The shaded region is bounded by the curve, the y-axis and the line y = 1. Find the

exact volume obtained when this shaded region is rotated through 360◦ about the y-axis. [6]

6 The first term of an arithmetic progression is 12 and the sum of the first 9 terms is 135.

(i) Find the common difference of the progression. [2]

The first term, the ninth term and the nth term of this arithmetic progression are the first term, the

second term and the third term respectively of a geometric progression.

(ii) Find the common ratio of the geometric progression and the value of n. [5]
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7 The curve y = 10

2x + 1
− 2 intersects the x-axis at A. The tangent to the curve at A intersects the y-axis

at C.

(i) Show that the equation of AC is 5y + 4x = 8. [5]

(ii) Find the distance AC. [2]

8

O B

X

A

r

In the diagram, AB is an arc of a circle with centre O and radius r. The line XB is a tangent to the

circle at B and A is the mid-point of OX.

(i) Show that angle AOB = 1
3
π radians. [2]

Express each of the following in terms of r, π and
√

3:

(ii) the perimeter of the shaded region, [3]

(iii) the area of the shaded region. [2]

9 A curve is such that
d2y

dx2
= −4x. The curve has a maximum point at (2, 12).

(i) Find the equation of the curve. [6]

A point P moves along the curve in such a way that the x-coordinate is increasing at 0.05 units

per second.

(ii) Find the rate at which the y-coordinate is changing when x = 3, stating whether the y-coordinate

is increasing or decreasing. [2]

10 The equation of a line is 2y + x = k, where k is a constant, and the equation of a curve is xy = 6.

(i) In the case where k = 8, the line intersects the curve at the points A and B. Find the equation of

the perpendicular bisector of the line AB. [6]

(ii) Find the set of values of k for which the line 2y + x = k intersects the curve xy = 6 at two distinct

points. [3]
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11 The function f is such that f(x) = 8 − (x − 2)2, for x ∈ >.

(i) Find the coordinates and the nature of the stationary point on the curve y = f(x). [3]

The function g is such that g(x) = 8 − (x − 2)2, for k ≤ x ≤ 4, where k is a constant.

(ii) State the smallest value of k for which g has an inverse. [1]

For this value of k,

(iii) find an expression for g−1(x), [3]

(iv) sketch, on the same diagram, the graphs of y = g(x) and y = g−1(x). [3]
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