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1 The first term of an arithmetic progression is 61 and the second term is 57. The sum of the first

n terms is n. Find the value of the positive integer n. [4]

2 A curve is such that
dy

dx
= −

8

x3
− 1 and the point (2, 4) lies on the curve. Find the equation of the

curve. [4]

3 An oil pipeline under the sea is leaking oil and a circular patch of oil has formed on the surface of the

sea. At midday the radius of the patch of oil is 50 m and is increasing at a rate of 3 metres per hour.

Find the rate at which the area of the oil is increasing at midday. [4]

4 (i) Find the first 3 terms in the expansion of (2x − x2)
6

in ascending powers of x. [3]

(ii) Hence find the coefficient of x8 in the expansion of (2 + x)(2x − x2)
6
. [2]

5 A curve has equation y = 2x +
1

(x − 1)2
. Verify that the curve has a stationary point at x = 2 and

determine its nature. [5]
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The diagram shows a sector OAB of a circle with centre O and radius r. Angle AOB is θ radians.

The point C on OA is such that BC is perpendicular to OA. The point D is on BC and the circular arc

AD has centre C.

(i) Find AC in terms of r and θ. [1]

(ii) Find the perimeter of the shaded region ABD when θ = 1
3
π and r = 4, giving your answer as an

exact value. [6]

7 (i) Solve the equation 2 cos2
θ = 3 sin θ, for 0◦ ≤ θ ≤ 360◦. [4]

(ii) The smallest positive solution of the equation 2 cos2(nθ) = 3 sin(nθ), where n is a positive

integer, is 10◦. State the value of n and hence find the largest solution of this equation in the

interval 0◦ ≤ θ ≤ 360◦. [3]
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3 = 2 – 1y x

The diagram shows the curve y2 = 2x − 1 and the straight line 3y = 2x − 1. The curve and straight line

intersect at x = 1
2

and x = a, where a is a constant.

(i) Show that a = 5. [2]

(ii) Find, showing all necessary working, the area of the shaded region. [6]

9 The position vectors of points A and B relative to an origin O are a and b respectively. The position

vectors of points C and D relative to O are 3a and 2b respectively. It is given that

a = ( 2

1

2

) and b = (4

0

6

) .

(i) Find the unit vector in the direction of
−−→
CD. [3]

(ii) The point E is the mid-point of CD. Find angle EOD. [6]

10 The function f is defined by f(x) = 4x2 − 24x + 11, for x ∈ >.

(i) Express f(x) in the form a(x − b)2 + c and hence state the coordinates of the vertex of the graph

of y = f(x). [4]

The function g is defined by g(x) = 4x2 − 24x + 11, for x ≤ 1.

(ii) State the range of g. [2]

(iii) Find an expression for g−1(x) and state the domain of g−1. [4]

[Question 11 is printed on the next page.]
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The diagram shows the curve y = (6x + 2)
1
3 and the point A (1, 2) which lies on the curve. The tangent

to the curve at A cuts the y-axis at B and the normal to the curve at A cuts the x-axis at C.

(i) Find the equation of the tangent AB and the equation of the normal AC. [5]

(ii) Find the distance BC. [3]

(iii) Find the coordinates of the point of intersection, E, of OA and BC, and determine whether E is

the mid-point of OA. [4]
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