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1 Solve the equation

ln(x + 5) = 1 + ln x,

giving your answer in terms of e. [3]

2 (i) Express 24 sin θ − 7 cos θ in the form R sin(θ − α), where R > 0 and 0◦ < α < 90◦. Give the value

of α correct to 2 decimal places. [3]

(ii) Hence find the smallest positive value of θ satisfying the equation

24 sin θ − 7 cos θ = 17. [2]

3 The parametric equations of a curve are

x = 4t

2t + 3
, y = 2 ln(2t + 3).

(i) Express
dy

dx
in terms of t, simplifying your answer. [4]

(ii) Find the gradient of the curve at the point for which x = 1. [2]

4 The variables x and y are related by the differential equation

(x2 + 4)dy

dx
= 6xy.

It is given that y = 32 when x = 0. Find an expression for y in terms of x. [6]

5 The expression f(x) is defined by f(x) = 3xe−2x.

(i) Find the exact value of f ′(−1
2
). [3]

(ii) Find the exact value of ã
0

−1
2

f(x) dx. [5]
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The diagram shows the curve y = x4 + 2x3 + 2x2 − 4x − 16, which crosses the x-axis at the points (α, 0)
and (β , 0) where α < β . It is given that α is an integer.

(i) Find the value of α. [2]

(ii) Show that β satisfies the equation x = 3
√(8 − 2x). [3]

(iii) Use an iteration process based on the equation in part (ii) to find the value of β correct to 2 decimal

places. Show the result of each iteration to 4 decimal places. [3]

7

O

y

x

The diagram shows part of the curve y = sin3 2x cos3 2x. The shaded region shown is bounded by the

curve and the x-axis and its exact area is denoted by A.

(i) Use the substitution u = sin 2x in a suitable integral to find the value of A. [6]

(ii) Given that ã
kπ

0

|sin3 2x cos3 2x | dx = 40A, find the value of the constant k. [2]

[Questions 8, 9 and 10 are printed on the next page.]
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8 Two lines have equations

r = ( 5

1

−4

) + s( 1

−1

3

) and r = ( p

4

−2

) + t( 2

5

−4

),

where p is a constant. It is given that the lines intersect.

(i) Find the value of p and determine the coordinates of the point of intersection. [5]

(ii) Find the equation of the plane containing the two lines, giving your answer in the form

ax + by + cß = d, where a, b, c and d are integers. [5]

9 (i) Express
9 − 7x + 8x2

(3 − x)(1 + x2) in partial fractions. [5]

(ii) Hence obtain the expansion of
9 − 7x + 8x2

(3 − x)(1 + x2) in ascending powers of x, up to and including the

term in x3. [5]

10 (a) Without using a calculator, solve the equation iw2 = (2 − 2i)2. [3]

(b) (i) Sketch an Argand diagram showing the region R consisting of points representing the

complex numbers ß where

|ß − 4 − 4i | ≤ 2. [2]
(ii) For the complex numbers represented by points in the region R, it is given that

p ≤ |ß| ≤ q and α ≤ arg ß ≤ β .

Find the values of p, q, α and β , giving your answers correct to 3 significant figures. [6]
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