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1 Given that cos x = p, where x is an acute angle in degrees, find, in terms of p,

(i) sin x, [1]

(ii) tan x, [1]

(iii) tan�90Å − x�. [1]
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Fig. 1 shows a hollow cone with no base, made of paper. The radius of the cone is 6 cm and the height

is 8 cm. The paper is cut from A to O and opened out to form the sector shown in Fig. 2. The circular

bottom edge of the cone in Fig. 1 becomes the arc of the sector in Fig. 2. The angle of the sector is1 radians. Calculate

(i) the value of 1, [4]

(ii) the area of paper needed to make the cone. [2]

3 The equation of a curve is y = 2��5x − 6� .

(i) Find the gradient of the curve at the point where x = 2. [3]

(ii) Find Ô 2��5x − 6� dx and hence evaluate Ô 3

2

2��5x − 6� dx. [4]

4 Relative to an origin O, the position vectors of points A and B are given by

−−→
OA = i + 2j and

−−→
OB = 4i + pk.

(i) In the case where p = 6, find the unit vector in the direction of
−−→
AB. [3]

(ii) Find the values of p for which angle AOB = cos−1
�

1
5

�
. [4]
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The diagram shows a rectangle ABCD in which point A is �0, 8� and point B is �4, 0�. The diagonal

AC has equation 8y + x = 64. Find, by calculation, the coordinates of C and D. [7]
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In the diagram, S is the point �0, 12� and T is the point �16, 0�. The point Q lies on ST , between S

and T , and has coordinates �x, y�. The points P and R lie on the x-axis and y-axis respectively and

OPQR is a rectangle.

(i) Show that the area, A, of the rectangle OPQR is given by A = 12x − 3
4
x2. [3]

(ii) Given that x can vary, find the stationary value of A and determine its nature. [4]

7 (a) An athlete runs the first mile of a marathon in 5 minutes. His speed reduces in such a way that

each mile takes 12 seconds longer than the preceding mile.

(i) Given that the nth mile takes 9 minutes, find the value of n. [2]

(ii) Assuming that the length of the marathon is 26 miles, find the total time, in hours and

minutes, to complete the marathon. [2]

(b) The second and third terms of a geometric progression are 48 and 32 respectively. Find the sum

to infinity of the progression. [4]

[Questions 8, 9 and 10 are printed on the next page.]
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8 A function f is defined by f : x  → 3 cos x − 2 for 0 ≤ x ≤ 20.

(i) Solve the equation f�x� = 0. [3]

(ii) Find the range of f. [2]

(iii) Sketch the graph of y = f�x�. [2]

A function g is defined by g : x  → 3 cos x − 2 for 0 ≤ x ≤ k.

(iv) State the maximum value of k for which g has an inverse. [1]

(v) Obtain an expression for g−1�x�. [2]
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The diagram shows part of the curve y = 8

x
+ 2x and three points A, B and C on the curve with

x-coordinates 1, 2 and 5 respectively.

(i) A point P moves along the curve in such a way that its x-coordinate increases at a constant rate

of 0.04 units per second. Find the rate at which the y-coordinate of P is changing as P passes

through A. [4]

(ii) Find the volume obtained when the shaded region is rotated through 360Å about the x-axis. [6]

10 A curve has equation y = 2x2 − 3x.

(i) Find the set of values of x for which y > 9. [3]

(ii) Express 2x2 − 3x in the form a�x+ b�2 + c, where a, b and c are constants, and state the coordinates

of the vertex of the curve. [4]

The functions f and g are defined for all real values of x by

f�x� = 2x2 − 3x and g�x� = 3x + k,

where k is a constant.

(iii) Find the value of k for which the equation gf�x� = 0 has equal roots. [3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable

effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will

be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2013 9709/12/O/N/13


