MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/32

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	32

Mark Scheme Notes

Marks are of the following three types:

- **M** Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
 - When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

- **AEF** Any Equivalent Form (of answer is equally acceptable)
- **AG** Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- **BOD** Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- **CAO** Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- **CWO** Correct Working Only often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- **PA** Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- **SOS** See Other Solution (the candidate makes a better attempt at the same question)
- **SR** Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR 1 A penalty of MR 1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR 2 penalty may be applied in particular cases if agreed at the coordination meeting.
- **PA 1** This is deducted from A or B marks in the case of premature approximation. The PA 1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	32

1	EITHE	<i>R</i> : State or imply non-modular inequality $(x + 2a)^2 > (3(x - a))^2$, or corresponding		
		quadratic equation, or pair of linear equations $(x + 2a) = \pm 3(x - a)$	B1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations		
		for x	M1	
		Obtain critical values $x = \frac{1}{4}a$ and $x = \frac{5}{2}a$	A1	
		State answer $\frac{1}{4}a < x < \frac{5}{2}a$	A1	
	OR:	Obtain critical value $x = \frac{5}{2}a$ from a graphical method, or by inspection, or by solving		
		a linear equation or inequality	B1	
		Obtain critical value $x = \frac{1}{4}a$ similarly	B2	
		State answer $\frac{1}{4}a < x < \frac{5}{2}a$	B1	4
		[Do not condone \leq for \leq .]		

2	Remove logarithms and obtain $5 - e^{-2x} = e^{\frac{1}{2}}$, or equivalent	B1	
	Obtain a correct value for e^{-2x} , e^{2x} , e^{-x} or e^{x} , e.g. $e^{2x} = 1/(5 - e^{\frac{1}{2}})$	B1	
	Use correct method to solve an equation of the form $e^{2x} = a$, $e^{-2x} = a$, $e^x = a$ or $e^{-x} = a$ where $a > 0$. [The M1 is dependent on the correct removal of logarithms.] Obtain answer $x = -0.605$ only.	M1 A1	4
2	Use $ext{and} (A + B)$ formula to obtain an equation in each and sin u	MI	

3	Use $\cos(A + B)$ formula to obtain an equation in $\cos x$ and $\sin x$	MI	
	Use trig formula to obtain an equation in $\tan x$ (or $\cos x$ or $\sin x$)	M1	
	Obtain $\tan x = \sqrt{3} - 4$, or equivalent (or find $\cos x$ or $\sin x$)	A1	
	Obtain answer $x = -66.2^{\circ}$	A1	
	Obtain answer $x = 113.8^{\circ}$ and no others in the given interval	A1	5
	[Ignore answers outside the given interval. Treat answers in radians as a misread (-1.16, 1.99).]		
	[The other solution methods are via $\cos x = \pm 1/\sqrt{(1 + (\sqrt{3} - 4)^2)}$ and		

$$\sin x = \pm (\sqrt{3} - 4) / \sqrt{(1 + (\sqrt{3} - 4)^2)} .$$

4	(i)	State $\frac{dx}{dt} = 1 - \sec^2 t$, or equivalent	B 1	
		Use chain rule	M1	
		Obtain $\frac{dy}{dt} = -\frac{\sin t}{\cos t}$, or equivalent	A1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
		Obtain the given answer correctly.	A1	

(ii) State or imply
$$t = \tan^{-1}(\frac{1}{2})$$
B1Obtain answer $x = -0.0364$ B12

5

	Pa	ge 5	Mark Scheme	Syllabus	Paper	
		0	GCE A LEVEL – May/June 2014	9709	32	
=	(•)	D:66	$\int dx = \int dx = $		D1	
5	(i)		ate $f(x)$ and obtain $f'(x) = (x-2)^2 g'(x) + 2(x-2)g(x)$		B1	2
		Conclude	that $(x-2)$ is a factor of $f'(x)$		B1	2
	(ii)	EITHER:	Substitute $x = 2$, equate to zero and state a correct equation	1,		
			e.g. $32 + 16a + 24 + 4b + a = 0$		B1	
			Differentiate polynomial, substitute $x = 2$ and equate to $(x = 2)$ and equate to $(x = 2)$ and equate constant remainder to zero.	o zero or divide	-	
			(x-2) and equate constant remainder to zero Obtain a correct equation, e.g. $80 + 32a + 36 + 4b = 0$		M1* A1	
		OR1:	Identify given polynomial with $(x-2)^2(x^3 + Ax^2 + Bx + C)^2$	r) and obtain an	AI	
		OKI.	equation in <i>a</i> and/or <i>b</i>) and obtain an	M1*	
			Obtain a correct equation, e.g. $\frac{1}{4}a - 4(4+a) + 4 = 3$		Al	
			Obtain a second correct equation, e.g. $-\frac{3}{4}a + 4(4+a) = b$		Al	
		OR2:	Divide given polynomial by $(x - 2)^2$ and obtain an equation	on in a and b	M1*	
		<i>UK2</i> .	Obtain a correct equation, e.g. $29 + 8a + b + 0$		Al	
			Obtain a contect equation, e.g. $25 + 6a + b + 6$ Obtain a second correct equation, e.g. $176 + 47a + 4b = 0$		A1 A1	
		Solve for	1 2		M1(dep*)	
		Obtain a =	= -4 and $b = 3$		A1	5
6	(i)	Use corre	ct arc formula and form an equation in r and x		M1	
-	(-)		correct equation in any form		A1	
		Rearrange	e in the given form		A1	3
	(;;)	Consider	sign of a relevant expression at $x = 1$ and $x = 1.5$, or compa	ra valuas of rala	ant	
	(II)		is a relevant expression at $x = 1$ and $x = 1.5$, or comparent sign of $x = 1$ and $x = 1.5$	re values of relev	M1	
		-	the argument correctly with correct calculated values		A1	2
	(•••)	II 41 '4			N/1	
	(III)		erative formula correctly at least once hal answer 1.21		M1 A1	
			ficient iterations to 4 d.p. to justify 1.21 to 2 d.p., or show the	here is a sign char		
		in the inte	erval (1.205,1.215)		A1	3
			_			
7	(a)	EITHER:	Substitute and expand $(-1 + \sqrt{5} i)^3$ completely		M1	
			Use $i^2 = -1$ correctly at least once		M1	
			Obtain $a = -12$		A1	
			State that the other complex root is $-1 - \sqrt{5}$ i		B1	
		<i>OR1</i> :	State that the other complex root is $-1 - \sqrt{5}$ i		B1	
			State the quadratic factor $z^2 + 2z + 6$		B1	
			Divide the cubic by a 3-term quadratic, equate remainder to			
			<i>a</i> or, using a 3-term quadratic, factorise the cubic and deter Obtain $a = -12$	innne <i>a</i>	M1 A1	
		OR2:	State that the other complex root is $-1 - \sqrt{5i}$		B1	
		0112.	State or show the third root is 2		B1	
			Use a valid method to determine <i>a</i>		M1	
			Obtain $a = -12$		A1	
		OR3:	Substitute and use De Moivre to cube $\sqrt{6}$ cis(114.1°), or eq	luivalent	M1	
			Find the real and imaginary parts of the expression		M1	
			Obtain $a = -12$		A1	
			State that the other complex root is $-1 - \sqrt{5i}$		B1	4

F	Page 6	Mark Scheme	Syllabus	Paper	
		GCE A LEVEL – May/June 2014	9709	32	
(1	b) <i>EITHER:</i>	Substitute $w = \cos 2\theta + i \sin 2\theta$ in the given expression		B1	
		Use double angle formulae throughout		M1	
		Express numerator and denominator in terms of $\cos\theta$ and	$\sin\theta$ only	A1	
		Obtain given answer correctly		A1	
	OR:	Substitute $w = e^{2i\theta}$ in the given expression		B1	
		Divide numerator and denominator by $e^{i\theta}$, or equivalent		M1	
		Express numerator and denominator in terms of $\cos\theta$ and	$\sin\theta$ only	A1	
		Obtain the given answer correctly		A1	4
8 (i	i) Use produ	uct rule		M1	
		privative in any correct form		A1	
		ate first derivative using the product rule		M1	
	Obtain se	cond derivative in any correct form, e.g. $-\frac{1}{2}\sin\frac{1}{2}x - \frac{1}{4}x\cos^{2}\frac{1}{4}x$	$s\frac{1}{2}x - \frac{1}{2}\sin\frac{1}{2}x$	A1	
	Verify the	e given statement		A1	5
(i	ii) Integrate	and reach $kx \sin \frac{1}{2}x + l \int \sin \frac{1}{2}x dx$		M1*	
	Obtain 22	$x\sin\frac{1}{2}x - 2\int\sin\frac{1}{2}xdx$, or equivalent		A1	
		definite integral $2x \sin \frac{1}{2}x + 4 \cos \frac{1}{2}x$		A1	
		ct limits $x = 0, x = \pi$ correctly		M1(dep*)	-
	Obtain an	swer $2\pi - 4$, or exact equivalent		A1	5
9 (i	i) State or ir	nply $\frac{dN}{dt} = kN(1 - 0.01N)$ and obtain the given answer $k = 0$).02	B1	1
(i	· •	variables and attempt integration of at least one side		M1	
		and obtain term $0.02t$, or equivalent	1 D	A1	
	Carry out	a relevant method to obtain A or B such that $\frac{1}{N(1-0.01N)}$	$\equiv \frac{A}{N} + \frac{B}{1 - 0.01N}$	\overline{V} , or	
	equivalen	t		M1*	
		=1 and $B = 0.01$, or equivalent		A1	
	-	and obtain terms $\ln N - \ln(1 - 0.01N)$, or equivalent		A1√	
		a constant or use limits $t = 0$, $N = 20$ in a solution w	with terms $a \ln \Lambda$		
		$(01N), ab \neq 0$		M1(dep*)	
		prrect answer in any form, e.g. $\ln N - \ln(1 - 0.01N) = 0.02t + 1000$	- ln 25	A1	
	Rearrange	e and obtain $t = 50 \ln(4N/(100 - N))$, or equivalent		A1	8
(i	iii) Substitute	N = 40 and obtain $t = 49.0$		B1	1

	Pa	ge 7	Mark Scheme	Syllabus	Paper	
	,	-	GCE A LEVEL – May/June 2014	9709	32	
<u>د</u> ــــــــــــــــــــــــــــــــــــ						
10	(i)	EITHER:	State or imply \overrightarrow{AB} and \overrightarrow{AC} correctly in component form		B1	
	(-)		Using the correct processes evaluate the scalar product \overline{AE}	\rightarrow \rightarrow AC or equivalant		
				-		
			Using the correct process for the moduli divide the so product of the moduli	aiai product by th	ne M1	
			Obtain answer $\frac{20}{21}$		A1	
		OR:	Use correct method to find lengths of all sides of triangle a	ABC	M1	
			Apply cosine rule correctly to find the cosine of angle BA	С	M1	
			Obtain answer $\frac{20}{21}$		A1	4
			21			-
	(ii)	State on o	xact value for the sine of angle <i>BAC</i> , e.g. $\sqrt{41}/21$		B1√ [*]	
	(11)		t area formula to find the area of triangle ABC		ы. М1	
						~
			swer $\frac{1}{2}\sqrt{41}$, or exact equivalent		A1	3
		[SR: Allo	w use of a vector product, e.g. $\overrightarrow{AB} \times \overrightarrow{AC} = -6\mathbf{i} + 2\mathbf{j} - \mathbf{k}$	B1√. Using corre	ct	
		process fo	r the modulus, divide the modulus by 2 M1. Obtain answer	$\frac{1}{2}\sqrt{41}$ A1.]		
	(iii)	EITHER:	State or obtain $b = 0$		B1	
			Equate scalar product of normal vector and \overrightarrow{BC} (or \overrightarrow{CB}) to	zero	M1	
			Obtain $a + b - 4c = 0$ (or $a - 4c = 0$)		A1	
			Substitute a relevant point in $4x + z = d$ and evaluate d		M1	
			Substitute a relevant point in $4x + 2 = a$ and evaluate a Obtain answer $4x + z = 9$, or equivalent		A1	
		<i>OR</i> 1:	Attempt to calculate vector product of relevant vectors, e.g	$\mathbf{y}_{i}(\mathbf{i}) \times (\mathbf{i} + \mathbf{i} - 4\mathbf{k})$	M1	
		J,	Obtain two correct components of the product	5. (J)(+ · J · in)	Al	
			Obtain correct product, e.g. $-4i - k$		A1	
			Substitute a relevant point in $4x + z = d$ and evaluate d		M1	
			Obtain $4x + z = 9$, or equivalent		A1	
		<i>OR</i> 2:	Attempt to form 2-parameter equation for the plane with r	elevant vectors	M1	
			State a correct equation, e.g. $\mathbf{r} = 2\mathbf{i} + 4\mathbf{j} + \mathbf{k} + \lambda(\mathbf{j}) + \mu(\mathbf{i} + \mathbf{j})$		A1	
			State 3 equations in x, y, z, λ and μ		A1	
			Eliminate μ		M1	
			Obtain answer $4x + z = 9$, or equivalent		A1	
		<i>OR</i> 3:	State or obtain $b = 0$		B1	
			Substitute for B and C in the plane equation and obta	$ain \ 2a + c = d \ an$		
			3a - 3c = d (or $2a + 4b + c = d$ and $3a + 5b - 3c = d$)		B1	
			Solve for one ratio, e.g. <i>a</i> : <i>d</i>		M1	
			Obtain $a: c: d$, or equivalent		M1	
		OP4	Obtain answer $4x + z = 9$, or equivalent Attempt to form a determinent equation for the plane with	rolovort vostara	A1 M1	
		OR4:	Attempt to form a determinant equation for the plane with $\begin{vmatrix} x-2 & y-4 & z-1 \end{vmatrix}$	relevant vectors	M1	
			State a correct equation, e.g. $\begin{vmatrix} 0 & 1 & 0 \\ 1 & 1 & -4 \end{vmatrix} = 0$		A1	
			Attempt to use a correct method to expand the determinan	t	M1	
			Obtain two correct terms of a 3-term expansion, or equiva		A1	
			Obtain answer $4x + z = 9$, or equivalent		A1	5