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1 Solve the equation log10�x + 9� = 2 + log10 x. [3]

2 Expand �1 + 3x�−
1
3 in ascending powers of x, up to and including the term in x3, simplifying the

coefficients. [4]

3 (i) Show that the equation

tan�x − 60Å� + cot x = ï3

can be written in the form

2 tan2 x + �ï3� tan x − 1 = 0. �3�

(ii) Hence solve the equation

tan�x − 60Å� + cot x = ï3,

for 0Å < x < 180Å. [3]

4 The equation x = 10

e2x − 1
has one positive real root, denoted by !.

(i) Show that ! lies between x = 1 and x = 2. [2]

(ii) Show that if a sequence of positive values given by the iterative formula

xn+1 = 1
2

ln

P
1 + 10

xn

Q

converges, then it converges to !. [2]

(iii) Use this iterative formula to determine ! correct to 2 decimal places. Give the result of each

iteration to 4 decimal places. [3]

5 The variables x and 1 satisfy the differential equation

2 cos21 dx

d1 = ��2x + 1�,

and x = 0 when 1 = 1
4
0. Solve the differential equation and obtain an expression for x in terms of 1.

[7]

© UCLES 2014 9709/33/M/J/14



3

6

x

y

O

M

The diagram shows the curve
�
x2 + y2

�2 = 2
�
x2 − y2

�
and one of its maximum points M. Find the

coordinates of M. [7]

7 (a) The complex number
3 − 5i

1 + 4i
is denoted by u. Showing your working, express u in the form

x + iy, where x and y are real. [3]

(b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex

numbers satisfying the inequalities �Ï − 2 − i � ≤ 1 and �Ï − i � ≤ �Ï − 2 �. [4]

(ii) Calculate the maximum value of arg Ï for points lying in the shaded region. [2]

8 Let f�x� = 6 + 6x

�2 − x��2 + x2�
.

(i) Express f�x� in the form
A

2 − x
+ Bx + C

2 + x2
. [4]

(ii) Show that Ó 1

−1

f�x�dx = 3 ln 3. [5]
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The diagram shows the curve y = e2 sin x cos x for 0 ≤ x ≤ 1
2
0, and its maximum point M.

(i) Using the substitution u = sin x, find the exact value of the area of the shaded region bounded by

the curve and the axes. [5]

(ii) Find the x-coordinate of M, giving your answer correct to 3 decimal places. [6]

© UCLES 2014 9709/33/M/J/14 [Turn over



4

10 The line l has equation r = i + 2j − k + ,�3i − 2j + 2k� and the plane p has equation 2x + 3y − 5Ï = 18.

(i) Find the position vector of the point of intersection of l and p. [3]

(ii) Find the acute angle between l and p. [4]

(iii) A second plane q is perpendicular to the plane p and contains the line l. Find the equation of q,

giving your answer in the form ax + by + cÏ = d. [5]
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