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1 Express 2x2 − 12x + 7 in the form a�x + b�2 + c, where a, b and c are constants. [3]

2 A curve is such that
dy

dx
= �2x + 1�

1
2 and the point �4, 7� lies on the curve. Find the equation of the

curve. [4]

3 (i) Write down the first 4 terms, in ascending powers of x, of the expansion of �a − x�5. [2]

(ii) The coefficient of x3 in the expansion of �1 − ax��a − x�5 is −200. Find the possible values of the

constant a. [4]

4 (i) Express the equation 3 sin 1 = cos1 in the form tan 1 = k and solve the equation for 0Å < 1 < 180Å.

[2]

(ii) Solve the equation 3 sin2 2x = cos2 2x for 0Å < x < 180Å. [4]

5 Relative to an origin O, the position vectors of the points A, B and C are given by

−−→
OA =

`
3

2

−3

a
,

−−→
OB =

`
5

−1

−2

a
and

−−→
OC =

`
6

1

2

a
.

(i) Show that angle ABC is 90Å. [4]

(ii) Find the area of triangle ABC, giving your answer correct to 1 decimal place. [3]

6

x

y

O

y =
1 − 5x

2x

The diagram shows the graph of y = f −1�x�, where f −1 is defined by f −1�x� = 1 − 5x

2x
for 0 < x ≤ 2.

(i) Find an expression for f�x� and state the domain of f. [5]

(ii) The function g is defined by g�x� = 1

x
for x ≥ 1. Find an expression for f −1g�x�, giving your

answer in the form ax + b, where a and b are constants to be found. [2]
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7 The point A has coordinates �p, 1� and the point B has coordinates �9, 3p + 1�, where p is a constant.

(i) For the case where the distance AB is 13 units, find the possible values of p. [3]

(ii) For the case in which the line with equation 2x + 3y = 9 is perpendicular to AB, find the value

of p. [4]

8 The function f is defined by f�x� = 1

x + 1
+

1

�x + 1�2
for x > −1.

(i) Find f ′�x�. [3]

(ii) State, with a reason, whether f is an increasing function, a decreasing function or neither. [1]

The function g is defined by g�x� = 1

x + 1
+

1

�x + 1�2
for x < −1.

(iii) Find the coordinates of the stationary point on the curve y = g�x�. [4]

9 (a) The first term of an arithmetic progression is −2222 and the common difference is 17. Find the

value of the first positive term. [3]

(b) The first term of a geometric progression is ï3 and the second term is 2 cos1, where 0 < 1 < 0.

Find the set of values of 1 for which the progression is convergent. [5]

10

x

y

O CB
�3, 0�

A �2, 9�

y = 9 + 6x − 3x2

Points A �2, 9� and B �3, 0� lie on the curve y = 9 + 6x − 3x2, as shown in the diagram. The tangent at

A intersects the x-axis at C. Showing all necessary working,

(i) find the equation of the tangent AC and hence find the x-coordinate of C, [4]

(ii) find the area of the shaded region ABC. [5]

[Question 11 is printed on the next page.]
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11

! radO

A

B

C

r

In the diagram, OAB is a sector of a circle with centre O and radius r. The point C on OB is such

that angle ACO is a right angle. Angle AOB is ! radians and is such that AC divides the sector into

two regions of equal area.

(i) Show that sin ! cos! = 1
2
!. [4]

It is given that the solution of the equation in part (i) is ! = 0.9477, correct to 4 decimal places.

(ii) Find the ratio

perimeter of region OAC : perimeter of region ACB,

giving your answer in the form k : 1, where k is given correct to 1 decimal place. [5]

(iii) Find angle AOB in degrees. [1]
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