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1 (i) Find the coefficients of x4 and x5 in the expansion of �1 − 2x�5. [2]

(ii) It is given that, when �1 + px��1 − 2x�5 is expanded, there is no term in x5. Find the value of the

constant p. [2]

2 A curve for which
dy

dx
= 3x2 −

2

x3
passes through �−1, 3�. Find the equation of the curve. [4]

3 The 12th term of an arithmetic progression is 17 and the sum of the first 31 terms is 1023. Find the

31st term. [5]

4 (a) Solve the equation sin−1�3x� = −1
3
0, giving the solution in an exact form. [2]

(b) Solve, by factorising, the equation 2 cos1 sin1 − 2 cos1 − sin 1 + 1 = 0 for 0 ≤ 1 ≤ 0. [4]

5 Two points have coordinates A �5, 7� and B �9, −1�.

(i) Find the equation of the perpendicular bisector of AB. [3]

The line through C �1, 2� parallel to AB meets the perpendicular bisector of AB at the point X.

(ii) Find, by calculation, the distance BX. [5]

6 A vacuum flask (for keeping drinks hot) is modelled as a closed cylinder in which the internal radius

is r cm and the internal height is h cm. The volume of the flask is 1000 cm3. A flask is most efficient

when the total internal surface area, A cm2, is a minimum.

(i) Show that A = 20r2 +
2000

r
. [3]

(ii) Given that r can vary, find the value of r, correct to 1 decimal place, for which A has a stationary

value and verify that the flask is most efficient when r takes this value. [5]
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2.4

The diagram shows a pyramid OABC with a horizontal triangular base OAB and vertical height OC.

Angles AOB, BOC and AOC are each right angles. Unit vectors i, j and k are parallel to OA, OB and

OC respectively, with OA = 4 units, OB = 2.4 units and OC = 3 units. The point P on CA is such

that CP = 3 units.

(i) Show that
−−→
CP = 2.4i − 1.8k. [2]

(ii) Express
−−→
OP and

−−→
BP in terms of i, j and k. [2]

(iii) Use a scalar product to find angle BPC. [4]

8 The function f is such that f�x� = a2x2 − ax + 3b for x ≤
1

2a
, where a and b are constants.

(i) For the case where f�−2� = 4a2 − b + 8 and f�−3� = 7a2 − b + 14, find the possible values of a

and b. [5]

(ii) For the case where a = 1 and b = −1, find an expression for f −1�x� and give the domain of f −1.

[5]
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In Fig. 1, OAB is a sector of a circle with centreO and radius r. AX is the tangent at A to the arc

AB and angle BAX = !.

(i) Show that angle AOB = 2!. [2]

(ii) Find the area of the shaded segment in terms of r and !. [2]

(b)

A B

C

X

4 cm

4 cm4 cm

Fig. 2

In Fig. 2, ABC is an equilateral triangle of side 4 cm. The lines AX, BX and CX are tangents to

the equal circular arcs AB, BC and CA. Use the results in part (a) to find the area of the shaded

region, giving your answer in terms of 0 and ï3. [6]
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The diagram shows part of the curve y = 1
16
�3x − 1�2, which touches the x-axis at the point P. The

point Q �3, 4� lies on the curve and the tangent to the curve at Q crosses the x-axis at R.

(i) State the x-coordinate of P. [1]

Showing all necessary working, find by calculation

(ii) the x-coordinate of R, [5]

(iii) the area of the shaded region PQR. [6]
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