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1 Find the set of values of k for which the curve y = kx2 − 3x and the line y = x − k do not meet. [3]

2 The coefficient of x3 in the expansion of �1 − 3x�6 + �1 + ax�5 is 100. Find the value of the constant a.

[4]

3 Showing all necessary working, solve the equation 6 sin2 x − 5 cos2 x = 2 sin2 x + cos2 x for

0Å ≤ x ≤ 360Å. [4]

4 The function f is such that f�x� = x3 − 3x2 − 9x + 2 for x > n, where n is an integer. It is given that f is

an increasing function. Find the least possible value of n. [4]

5

1.8 rad

O

A

B

C

D

E
6 cm

The diagram shows a major arc AB of a circle with centre O and radius 6 cm. Points C and D on OA

and OB respectively are such that the line AB is a tangent at E to the arc CED of a smaller circle also

with centre O. Angle COD = 1.8 radians.

(i) Show that the radius of the arc CED is 3.73 cm, correct to 3 significant figures. [2]

(ii) Find the area of the shaded region. [4]

6 Three points, A, B and C, are such that B is the mid-point of AC. The coordinates of A are �2, m� and

the coordinates of B are �n, −6�, where m and n are constants.

(i) Find the coordinates of C in terms of m and n. [2]

The line y = x + 1 passes through C and is perpendicular to AB.

(ii) Find the values of m and n. [5]
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The diagram shows a triangular pyramid ABCD. It is given that

−−→
AB = 3i + j + k,

−−→
AC = i − 2j − k and

−−→
AD = i + 4j − 7k.

(i) Verify, showing all necessary working, that each of the angles DAB, DAC and CAB is 90Å. [3]

(ii) Find the exact value of the area of the triangle ABC, and hence find the exact value of the volume

of the pyramid. [4]

[The volume V of a pyramid of base area A and vertical height h is given by V = 1
3
Ah.]

8 (i) Express 4x2 + 12x + 10 in the form �ax + b�2 + c, where a, b and c are constants. [3]

(ii) Functions f and g are both defined for x > 0. It is given that f�x�= x2 + 1 and fg�x�= 4x2 + 12x+ 10.

Find g�x�. [1]

(iii) Find �fg�−1�x� and give the domain of �fg�−1. [4]

9 (a) Two convergent geometric progressions, P and Q, have the same sum to infinity. The first and

second terms of P are 6 and 6r respectively. The first and second terms of Q are 12 and −12r

respectively. Find the value of the common sum to infinity. [3]

(b) The first term of an arithmetic progression is cos 1 and the second term is cos1 + sin21, where

0 ≤ 1 ≤ 0. The sum of the first 13 terms is 52. Find the possible values of 1. [5]

[Questions 10 and 11 are printed on the next page.]
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10 A curve is such that
dy

dx
=
2

a
x
−1
2 + ax

−3
2 , where a is a positive constant. The point A �a2, 3� lies on the

curve. Find, in terms of a,

(i) the equation of the tangent to the curve at A, simplifying your answer, [3]

(ii) the equation of the curve. [4]

It is now given that B �16, 8� also lies on the curve.

(iii) Find the value of a and, using this value, find the distance AB. [5]

11 A curve has equation y = �kx − 3�−1 + �kx − 3�, where k is a non-zero constant.

(i) Find the x-coordinates of the stationary points in terms of k, and determine the nature of each

stationary point, justifying your answers. [7]

(ii)

x

y

O

2

y = �x − 3�−1 + �x − 3�

The diagram shows part of the curve for the case when k = 1. Showing all necessary working,

find the volume obtained when the region between the curve, the x-axis, the y-axis and the line

x = 2, shown shaded in the diagram, is rotated through 360Å about the x-axis. [5]
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