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1  Solve the inequality |2x + 1| < 3|x = 2]|. (4]
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1
2  Expand m in ascending powers of x, up to and including the term in x°, simplifying the
y X
coeflicients. [4]
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3 Itisgiventhatx =1In(1-y)—Iny, where 0 <y < 1.

(i) Show thaty = 7 ©
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4  The parametric equations of a curve are
x=1Incosf, y=360-tanb,

L.

whereO<9<§

d
(i) Express ay in terms of tan 6. [5]
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(ii) Find the exact y-coordinate of the point on the curve at which the gradient of the normal is equal
to 1. [3]
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The diagram shows a semicircle with centre O, radius r and diameter AB. The point P on its
circumference is such that the area of the minor segment on AP is equal to half the area of the minor
segment on BP. The angle AOP is x radians.

(i) Show that x satisfies the equation x = %(n + sinx). [3]
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(ii) Verify by calculation that x lies between 1 and 1.5. [2]

(iii) Use an iterative formula based on the equation in part (i) to determine x correct to 3 decimal
places. Give the result of each iteration to 5 decimal places. [3]
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6  The plane with equation 2x + 2y — z = 5 is denoted by m. Relative to the origin O, the points A and B
have coordinates (3, 4, 0) and (-1, 0, 2) respectively.

(i) Show that the plane m bisects AB at right angles. [5]
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A second plane p is parallel to m and nearer to O. The perpendicular distance between the planes is 1.

(ii) Find the equation of p, giving your answer in the form ax + by + cz = d. [3]
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7  Throughout this question the use of a calculator is not permitted.
The complex numbers u# and w are defined by u = -1 + 7i and w = 3 + 4i.
(i) Showing all your working, find in the form x + iy, where x and y are real, the complex numbers
u—2wand £ [4]
w

In an Argand diagram with origin O, the points A, B and C represent the complex numbers u, w and
u — 2w respectively.

(ii) Prove that angle AOB = %7‘[. (2]

© UCLES 2017 9709/31/MIINM7



13

© UCLES 2017 9709/31/MIINM7 [TllI'Il over



14
8 (i) By first expanding 2 sin(x — 30°), express 2 sin(x — 30°) — cos x in the form R sin(x — a), where

R > 0and 0° < a < 90°. Give the exact value of R and the value of o correct to 2 decimal places.

[5]
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(ii) Hence solve the equation
2sin(x — 30°) —cosx =1,

for 0° < x < 180°. [3]
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9 (i) Express in partial fractions. [2]
X

1
(2x+3)

(ii) The variables x and y satisfy the differential equation
dy
2x+3)— =y,
x(2x + 3) y

and it is given that y = 1 when x = 1. Solve the differential equation and calculate the value of y
when x = 9, giving your answer correct to 3 significant figures. [7]
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10

(0]

I

The diagram shows the curve y = sinx cos®2x for 0 < x < é—lln and its maximum point M.

(i) Using the substitution u = cos x, find by integration the exact area of the shaded region bounded
by the curve and the x-axis. [6]
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(ii) Find the x-coordinate of M. Give your answer correct to 2 decimal places. [6]
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