

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/12
Paper 1 Pure Mathem	natics 1 (P1)	Oc	tober/November 2017
			1 hour 45 minutes
Candidates answer or	the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

International Examinations

	rm independe			(150	,		
••••••	•••••	•••••			•••••		•••••
•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
		•••••		•••••		•••••	
				••••			
•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
	•••••	•••••		•••••		•••••	
••••••	••••••••	•••••••••	•••••	•••••	••••••	••••••	••••••
					•••••		
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
	•••••	•••••		•••••			
••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
				,			
		•••••		•••••		•••••	

2	A function	f is defined	$bvf \cdot r \mathrel{\sqsubseteq}$	$4-5x$ for $x \in \mathbb{R}$
<i>≟</i>	ATUIICUOII	I IS UCITICU		$T = J \lambda 101 \lambda \subseteq \mathbb{N}$

(i)	Find an expression for $f^{-1}(x)$ and find the point of intersection of the graphs of $y = f(x)$ and $y = f^{-1}(x)$.

The sum of the first <i>n</i> terms of an arithmetic progression is $\frac{1}{2}n(3n+7)$. Find common difference of the progression.	[4]

4

The diagram shows a semicircle with centre O and radius $6\,\mathrm{cm}$. The radius OC is perpendicular to the diameter AB. The point D lies on AB, and DC is an arc of a circle with centre B.

(i)	Calculate the length of the arc DC .	[3]

(ii`) Find	the	value	of
•		, 11114	uic	, ai ac	$\mathbf{o}_{\mathbf{I}}$

$\frac{\text{area of region } P}{\text{area of region } Q},$	
giving your answer correct to 3 significant figures.	[4]
	••••••
	•••••

$2\cos^2 2x + 3\cos 2x + 1 = 0.$	[3]
	L.
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • •
	• • • • • • • •
	• • • • • • • •
	• • • • • • • •
	•••••

Hence solve the equation $\cos 2x(\tan^2 2x + 3) + 3 = 0$ for $0^\circ \le x \le 180^\circ$.	
	•••••
	•••••
	•••••
	•••••
	••••••
	••••••

(i)	Find the values of the constants a and b .	[3]
(ii)	Evaluate ff(0).	[2]

The function g is defined by $g: x \mapsto c + d \sin x$ for $x \in \mathbb{R}$. The range of g is given Find the values of the constants c and d .	[3]
	•••••

7

Points A and B lie on the curve $y = x^2 - 4x + 7$. Point A has coordinates (4, 7) and B is the stationary

In	the case where L passes through the mid-point of AB , find the value of m .
••••	
• • • •	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	

 •••••
••••••
 ••••••
•
 ••••••
•••••
••••••
••••••
•••••

8	A curve is such that	$t \frac{\mathrm{d}y}{\mathrm{d}x} = -x^2 + 5x - 4x$
---	----------------------	--

	Find the <i>x</i> -coordinate of each of the stationary points of the curve.	[2]
		•••••••••••••••••••••••••••••••••••••••
		••••••
(ii)	Obtain an expression for $\frac{d^2y}{dx^2}$ and hence or otherwise find the nature of each of points.	f the stationary
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3

	•••••	•••••	•••••												
									••••						
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	•••••	•••••
	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
									•••••						
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
									•••••						
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
									•••••						
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••		• • • • • • • •	•••••	•••••
••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••		•••••	•••••
				. 			••••						• • • • • • • • •		

The diagram shows a trapezium OABC in which OA is parallel to CB. The position vectors of A and B relative to the origin O are given by $\overrightarrow{OA} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix}$.

(i)	Show that angle OAB is 90° .	[3]
		•••••
The	magnitude of \overrightarrow{CB} is three times the magnitude of \overrightarrow{OA} .	
(ii)	Find the position vector of <i>C</i> .	[3]

(iii)	Find the exact area of the trapezium $OABC$, giving your answer in the form $a\sqrt{b}$, where a and b
()	
	are integers. [3]

10

The diagram shows part of the curve $y = \sqrt{(5x-1)}$ and the normal to the curve at the point P(2, 3). This normal meets the *x*-axis at Q.

(i)	Find the equation of the normal at <i>P</i> .	[4]
		•••••

••••••
••••••
 •••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.