

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
INAIVIE			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/61
Paper 6 Probability &	Statistics 1 (S1)	Oct	ober/November 2017
			1 hour 15 minutes
Candidates answer on	the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

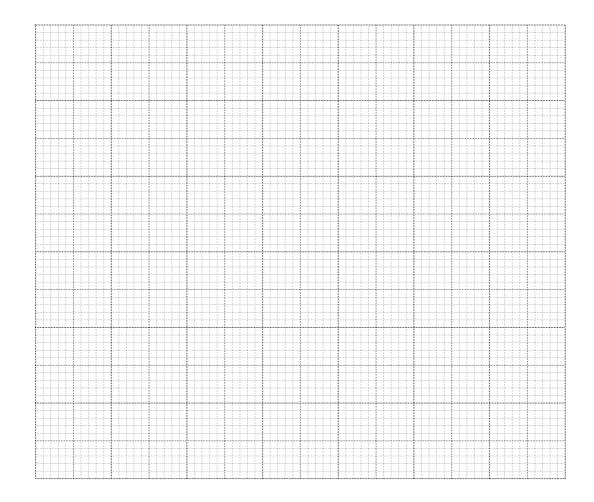
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

1 The discrete random variable X has the following probability distribution.

x 1		2	3	6
P(X = x)	0.15	p	0.4	q


Given that $E(X) = 3.05$, find the values of p and q .	[4]

2 The time taken by a car to accelerate from 0 to 30 metres per second was measured correct to the nearest second. The results from 48 cars are summarised in the following table.

Time (seconds)	3 – 5	6 – 8	9 – 11	12 – 16	17 – 25
Frequency	10	15	17	4	2

(i) On the grid, draw a cumulative frequency graph to represent this information.

[3]

(ii)	35 of these cars accelerated from 0 to 30 metres per second in a time more than t second. Estimate the value of t .

3

exp	experiment consists of throwing a biased die 30 times and noting the number of 4s deriment was repeated many times and the average number of 4s obtained in 30 throwe 6.21.	
(i)	Estimate the probability of throwing a 4.	[1]
Hei	nce	
) find the variance of the number of 4s obtained in 30 throws,	[1]
(iii)) find the probability that in 15 throws the number of 4s obtained is 2 or more.	[3]

4

The ages of a group of 12 people at an Art class have mean 48.7 years and standard deviation 7.65 years.

(i)	Find the mean age of all 19 people.
(ii)	The individual ages in years of people in the first Art class are denoted by x and those second Art class by y . By first finding Σx^2 and Σy^2 , find the standard deviation of the ages 19 people.

Over a period of time Julian finds that on long-distance flights he flies economy class on 82% of flights. On the rest of the flights he flies first class. When he flies economy class, the probability that he gets a good night's sleep is x . When he flies first class, the probability that he gets a good night sleep is 0.9 .
(i) Draw a fully labelled tree diagram to illustrate this situation.
The probability that Julian gets a good night's sleep on a randomly chosen flight is 0.285.
(ii) Find the value of x .
(-) (-)

ne is flying economy class.				[3
		 		•••••
		 		•••••
		 		•••••
		 		•••••
	•••••	 		•••••
		 		•••••
		 		•••••
	•••••	 		
				•••••
	•••••	 ••••••	•••••	•••••
	•••••	 •••••	•••••	•••••
	••••••••••	 ••••••	••••••	•••••
	••••••	 ••••••	••••••	•••••
	•••••	 		•••••

(a) A village hall has seats for 40 people, consisting of 8 rows with 5 seats in each row. Mary,

(1)	How many possible arrangements are there of seating Mary, Ahmad, Wayne, Elsie and John assuming there are no restrictions? [2]
(ii)	How many possible arrangements are there of seating Mary, Ahmad, Wayne, Elsie and Joh if Mary and Ahmad sit together in the front row and the other three sit together in one of the other rows?

,
••••••

7

7	distr class	weight, in grams, of pineapples is denoted by the random variable X which has a normal ribution with mean 500 and standard deviation 91.5. Pineapples weighing over 570 grams are sified as 'large'. Those weighing under 390 grams are classified as 'small' and the rest are classified nedium'.
	(i)	Find the proportions of large, small and medium pineapples. [5]

(11) 1	Find the weight exceeded by the heaviest 5% of pineapples.	[3]
•		
•		
•		
•		
•		
•		
•		
•		
iii) I	Find the value of k such that $P(k < X < 610) = 0.3$.	[5]
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		•••••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.