

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/32
Paper 3 Pure Mather	matics 3 (P3)		May/June 2018
			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

J sign	ificant figures.	•						
•••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••
•••••				•••••		•••••		•••••
•••••				•••••		•••••		•••••
		•••••						
••••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••		••••••		•••••
•••••			• • • • • • • • • • • • • • • • • • • •	•••••		•••••		•••••
•••••			• • • • • • • • • • • • • • • • • • • •	•••••		•••••		•••••
•••••		· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	••••••	•••••
•••••	•••••••••		• • • • • • • • • • • • • • • • • • • •	••••••	•••••••	••••••	•••••••	•••••
••••••	••••••		•••••••	••••••	•••••••	••••••	•••••••	••••••
		•••••						
••••••	••••••	,	•	••••••	••••••	••••••	••••••	••••••
		•••••						

•••••	••••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	••••
•••••				•••••		•••••			•••••			•••••	•••••					••••
									•••••				•••••					••••
																		••••
													•••••					
•••••	•	•••••	••••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	••••
•••••	••••••	•••••	••••••	•••••	•••••	•••••		••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	••••
•••••				•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••		•••••	••••
•••••		•••••	•••••	•••••	•••••	•••••			•••••	•••••			•••••		•••••			••••
						•••••			•••••				•••••					
													•••••					
•••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••
•••••	••••••	•••••	••••••	•••••	•••••	•••••		••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	••••
•••••		•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	••••
•••••								••••••	•••••	•••••	•••••	•••••	•••••		•••••		•••••	••••
		•••••											•••••					••••
													•••••					••••
													•••••					
•••••	••••••	•••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••
•••••	••••••	•••••		••••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	••••
							•••••		•••••	•••••	•••••		•••••					

3

In the diagram, the tangent to a curve at the point P with coordinates (x, y) meets the x-axis at T. The point N is the foot of the perpendicular from P to the x-axis. The curve is such that, for all values of x, the gradient of the curve is positive and TN = 2.

(i)	Show that the differential equation satisfied by x and y is $\frac{dy}{dx} = \frac{1}{2}y$.	[1]
		••••
		••••
		••••

The point with coordinates (4, 3) lies on the curve.

ressing y in terms of x . [5]

	 	•••••	•••••	
	 		•••••	
••••••	 •••••	•••••••••	•••••	•••••••
•••••	 		•••••	•••••
	 			•••••
	 			•••••
••••••	 ••••••	••••••	•••••	••••••
••••••	 			•••••
	 		•••••	
				•••••
	 			••••••

1	$\frac{\ln x - \sin 2x}{1 - \cos 2x} \equiv$	$1 + \cos x$				
	•••••			•••••		
	•••••		•••••	•••••	•	••••••
	•••••		•••••	•••••		•••••
						•
	•••••			•••••	••••••	•••••
	•••••					
•••••	•••••		•••••	••••••	•••••	•••••
				•••••		
	•••••		•••••	•••••	•••••	•••••
•••••	•••••	, 	•••••	•••••	••••••	•••••
•••••	•••••	,	••••••	••••••	•••••	••••••

(ii)) Hence, showing all necessary working, find $\int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi}$	$\frac{2\sin x - \sin 2x}{1 - \cos 2x} dx$, giving your answer in the
	form $\ln k$.	[4]

5 The equation of a curve is $x^2(x+3y) - y^3 = 3$.

(i)	Show that $\frac{dy}{dx} = \frac{x^2 + 2xy}{y^2 - x^2}$.	[4]
		· • • • • • •
		· • • • • • •

normal is 1	. •									[4]
			••••••	•••••	•••••		•••••	•••••	••••••	•••••
	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	
				•••••	•••••		•••••	•••••	•••••	
					•••••			•••••		
•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	
	•••••				•••••		•••••			
					•••••					
					•••••					
					•••••					
					•••••					
							•			•••••
•••••••	•••••••		••••••	••••••	•••••	••••••	••••••	••••••	••••••	•••••
••••••••••	••••••	••••••••	••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
••••••		••••••	••••••	••••••	•••••		•••••		••••••	•••••
	•••••		••••••	•••••	•••••		•••••			•••••

6

The diagram shows a triangle ABC in which AB = AC = a and angle $BAC = \theta$ radians. Semicircles are drawn outside the triangle with AB and AC as diameters. A circular arc with centre A joins B and C. The area of the shaded segment is equal to the sum of the areas of the semicircles.

(i)	Show that $\theta = \frac{1}{2}\pi + \sin \theta$.	[3]

-	lculation that					
						•••••
•••••	•••••	•••••	••••••	•••••	•••••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••••	•••••
•••••	•••••		••••••	•••••	•••••••	••••••
				•••••		
•••••	•••••	•••••	••••••	•••••	••••••	••••••
	•••••					
•••••		••••••	••••••	•••••		
Use an itera	tive formula b	pased on the	equation in p	part (i) to det	ermine θ cor	rrect to 2 dec
Use an itera places. Give	tive formula t	pased on the each iteration	equation in p	part (i) to det places.	ermine θ cor	rrect to 2 dec
Use an itera places. Give	tive formula t the result of o	pased on the each iteration	equation in p	part (i) to det places.	ermine θ cor	rrect to 2 dec
Use an itera places. Give	the result of 6	pased on the each iteration	to 4 decimal	places.		
Use an itera places. Give	the result of 6	each iteration	to 4 decimal	places.		
Jse an itera	the result of 6	each iteration	to 4 decimal	places.		
Use an itera	the result of 6	each iteration	to 4 decimal	places.		
Use an itera	the result of 6	each iteration	to 4 decimal	places.		
Jse an itera	the result of 6	each iteration	to 4 decimal	places.		
Jse an itera	the result of 6	each iteration	to 4 decimal	places.		
Jse an itera	the result of 6	each iteration	to 4 decimal	places.		
Jse an itera	the result of 6	each iteration	to 4 decimal	places.		
Jse an itera	the result of 6	each iteration	to 4 decimal	places.		
Jse an itera	the result of 6	each iteration	to 4 decimal	places.		
Jse an itera	the result of 6	each iteration	to 4 decimal	places.		

7	Throughout th	nic amostian	the use of	a calcula	tor is not	normitted
/	- I Hroughout H	us auestion	the use or	а саісша	LOP IS HOLD	oerminea.

The complex numbers $-3\sqrt{3} + i$ and $\sqrt{3} + 2i$ are denoted by u and v respectively.

. ma, m aic	form $x + iy$, w	here x and y	are real and	1 exact, the	complex n	umbers <i>uv</i>	and $\frac{-}{v}$.
				•••••	•••••	•••••	••••••
•••••							
••••••	•••••		•••••				•••••
••••••		••••••		••••••	••••••	••••••	••••••
	••••••			••••••	••••••	••••••	
					••••••		
••••••	•••••••		•••••	••••••	•••••	••••••	•••••
	•••••		•••••			•••••	
••••••		•••••	••••••	••••••	•••••	•••••	•••••
		•••••		•••••		•••••	

(11)	On a sketch of an Argand diagram with origin O , show the points A and B representing the complex numbers u and v respectively. Prove that angle $AOB = \frac{2}{3}\pi$.	
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••

The diagram shows the curve $y = (x + 1)e^{-\frac{1}{3}x}$ and its maximum point M.

(i)	Find the x -coordinate of M .	[4]

erms of e.					[:
	•••••				
	•••••		••••••		••••••
	•••••				••••••
	•••••				
	•••••				
	•••••	•••••			•
				•••••	

9	Let $f(r)$ –	$x-4x^2$
,	Let $I(x)$ –	$\frac{x-4x}{(3-x)(2+x^2)}$

Express $f(x)$ in the form $\frac{A}{3-x} + \frac{Bx+C}{2+x^2}$.	[4

					of x , up to a		
••••••	•••••••••	•••••	•••••••	••••••	•••••	•••••••	
•••••	•••••••••••	•	•••••••	•••••	•••••	••••••	•••••
				•••••			
•••••			• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	••••••
				•••••			
••••••	•••••••••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	••••••
						•••••	
		•••••	••••••	•••••	•••••	•••••	••••••
			•••••	•••••		•••••	

	Show that the lines are skew.	(i) Show the
 		•••••
 		•••••
 		•••••
 		•••••
		•••••
and m .	nne p is parallel to the lines l an	plane p is
to p.	Find a vector that is normal to p	ii) Find a
 		•••••

		•••••
(iii)	i) Given that p is equidistant from the lines l and m , find the equation of p . Give y the form $ax + by + cz = d$.	our answer in [3]
		•••••
		••••••
		•••••
		•••••
		••••••
		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any must be clearly shown.	question(s), the question number(s)

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.