

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/33
Paper 3 Pure Mathen	natics 3 (P3)		May/June 2018
			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

BLANK PAGE

coefficients.	,			uding the term i	
					•••••
			••••		
•••••••			•••••		•••••
		••••••			
			•••••		
•••••		••••••	••••••	••••••	•••••
	•••••	••••••		•••••	
					•••••
			•••••		
•••••	•••••	•••••	•••••	•••••	•••••
•••••		••••••			•••••
					•••••

places.								
						•••••		
•••••	•••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••
•••••		•••••	••••••		•••••	•••••		•••••
								•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		• • • • • • • • • • • • • • • • • • • •
•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		• • • • • • • • • • • • • • • • • • • •
						•••••		•••••
	•••••	•••••	••••••	•	•••••	•••••		•••••
						•••••		
	••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••		•••••
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••
		•••••				•••••		•••••
								•••••
•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

						s 3x dx, givin		
•••••						••••••		
•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	
				•••••			•••••	•••••
		•••••		•••••				
•••••		•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••••	•••••
•••••				•••••				•••••
								•••••
•••••			••••••	•••••				
•••••		•••••		•••••				
								•••••
•••••		•	•	•	••••••	••••••		•••••
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	
•••••								
				• • • • • • • • • • • • • • • • • • • •				

4

The curve with equation $y = \frac{\ln x}{3+x}$ has a stationary point at $x = p$.	
(i) Show that p satisfies the equation $\ln x = 1 + \frac{3}{x}$.	[3]

[2]

(ii) By sketching suitable graphs, show that the equation in part (i) has only one root.

(iii)	It is given that the equation in part (i) can be written in the form $x = \frac{3+x}{\ln x}$. Use an iterative formula based on this rearrangement to determine the value of p correct to 2 decimal places.
	Give the result of each iteration to 4 decimal places. [3]
	Give the result of each heration to 4 decimal places.
	Orve the result of each heration to 4 decimal places.
	Give the result of each heration to 4 decimal places.
	Orve the result of each heration to 4 decimal places.
	Give the result of each heration to 4 decimal places.
	Orve the result of each heration to 4 decimal places. [5]
	One the result of each neration to 4 decimal places.

5	(i)	By first expanding $(\cos^2 x + \sin^2 x)^3$, or otherwise, show that
		$\cos^6 x + \sin^6 x = 1 - \frac{3}{4}\sin^2 2x. $ [4]

(ii) Hence solve the equation
$\cos^6 x + \sin^6 x = \frac{2}{3},$ for $0^\circ < x < 180^\circ$. [4]

Express $\frac{1}{4-y^2}$ in partial fractions	•
	$x\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - y^2,$
and $y = 1$ when $x = 1$. Solve the di	
and $y = 1$ when $x = 1$. Solve the di	
and $y = 1$ when $x = 1$. Solve the di	
and $y = 1$ when $x = 1$. Solve the di	
and $y = 1$ when $x = 1$. Solve the di	
and $y = 1$ when $x = 1$. Solve the di	
and $y = 1$ when $x = 1$. Solve the di	
and $y = 1$ when $x = 1$. Solve the di	fferential equation, obtaining an expression for y in tern
	fferential equation, obtaining an expression for y in tern
	fferential equation, obtaining an expression for y in tern
	fferential equation, obtaining an expression for y in tern
	fferential equation, obtaining an expression for y in tern
	fferential equation, obtaining an expression for y in tern
	fferential equation, obtaining an expression for y in tern
	x = 4 - y, fferential equation, obtaining an expression for y in term
	fferential equation, obtaining an expression for y in tern

7 Throughout this question the use of	a calculator is not p	ermitted.
---------------------------------------	-----------------------	-----------

values of R and $\tan \alpha$.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
$m{e}^{rac{1}{4}\pi}$	
Hence, showing all necessary working, show that $\int_{-\frac{1}{4\pi}}^{\frac{1}{4\pi}} \frac{15}{(\cos \theta + 2\sin \theta)^2} d\theta = 5.$	
Hence, showing all necessary working, show that $\int_0^{\frac{1}{4}\pi} \frac{15}{(\cos \theta + 2\sin \theta)^2} d\theta = 5.$	
Hence, showing all necessary working, show that $\int_0^{\frac{1}{4}\pi} \frac{15}{(\cos \theta + 2\sin \theta)^2} d\theta = 5.$	
Hence, showing all necessary working, show that $\int_0^{\frac{1}{4}\pi} \frac{15}{(\cos \theta + 2\sin \theta)^2} d\theta = 5.$	
Hence, showing all necessary working, show that $\int_0^{\frac{1}{4}\pi} \frac{15}{(\cos \theta + 2\sin \theta)^2} d\theta = 5.$	
Hence, showing all necessary working, show that $\int_0^{\frac{1}{4}\pi} \frac{15}{(\cos \theta + 2\sin \theta)^2} d\theta = 5.$	
Hence, showing all necessary working, show that $\int_0^{\frac{1}{4}\pi} \frac{15}{(\cos\theta + 2\sin\theta)^2} d\theta = 5.$	
Hence, showing all necessary working, show that $\int_0^{\frac{1}{4}\pi} \frac{15}{(\cos \theta + 2\sin \theta)^2} d\theta = 5.$	
Hence, showing all necessary working, show that $\int_0^{\frac{1}{4}\pi} \frac{15}{(\cos \theta + 2\sin \theta)^2} d\theta = 5.$	
Hence, showing all necessary working, show that $\int_0^{\frac{1}{4}\pi} \frac{15}{(\cos \theta + 2 \sin \theta)^2} d\theta = 5.$	
Hence, showing all necessary working, show that $\int_0^{\frac{1}{4}\pi} \frac{15}{(\cos\theta + 2\sin\theta)^2} d\theta = 5.$	

8

Show that $\frac{dy}{dx} = \frac{2x^2 - y^2}{y^2 + 2xy}.$	

(ii)	Find the coordinates of the two points on the curve at which the tangent is parallel to the <i>y</i> -axis. [5]

9	(a)	Find the complex number z satisfying the equation	
	$3z - iz^* = 1 + 5i,$		
		where z^* denotes the complex conjugate of z . [4]	

(b)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers z which satisfy both the inequalities $ z \le 3$ and $\text{Im } z \ge 2$, where $\text{Im } z$ denotes the imaginary part of z . Calculate the greatest value of $\text{arg } z$ for points in this region. Give your answer in radians correct to 2 decimal places.

10 The points A and B have position vectors $2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $4\mathbf{i} + \mathbf{j} + \mathbf{k}$ respectively. The line l has equation

SII	now that l does not intersect the line passing through	A and B .	
			•••••
•••			
•••			
••••			
••••			•••••
••••			•••••
••••			
••••			
••••			
••••			
•••			

The point P, with parameter t, lies on l and is such that angle PAB is equal to 120° . (ii) Show that $3t^2 + 8t + 4 = 0$. Hence find the position vector of P.

)	Show that $3t^2 + 8t + 4 = 0$. Hence find the position vector of P .	[6]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.