

Cambridge International Examinations

Cambridge International Advanced Level

NAME							
CENTRE NUMBER				CANDIDATE NUMBER			
MATHEMATICS	}					9709)/72
Paper 7 Probab	ility & Sta	atistics 2 (S2)			Ма	y/June 2	:018
					1 hou	r 15 minu	ıtes
Candidates answ	wer on the	e Question Paper	•				
Additional Mater	rials:	List of Formulae	(MF9)				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

number of parties	es cliffica duri	ng a 4-mmute	period is less th	an 1.		
						•••••
						•••••
						•••••
						•••••
						•••••
The random vari	able B is define	$d by B = X_1 +$	X_2 , where X_1 a	and X_2 are indep		
The random vari The random vari of X . Describe fu	able <i>B</i> is define ally the distribute	d by $B = X_1 + 1$ tion of A and t	X_2 , where X_1 and the distribution of	and X_2 are indepof B .	pendent rando	m v
The random vari of X . Describe fu	able <i>B</i> is define ally the distribute	d by $B = X_1 + 1$ tion of A and t	X_2 , where X_1 and the distribution of	and X_2 are indepof B .	pendent rando	m v
The random vari of X . Describe fu	able <i>B</i> is define ally the distribute	d by $B = X_1 + 1$ tion of A and t	X_2 , where X_1 and the distribution of	and X_2 are indepof B .	pendent rando	m v
The random vari of X . Describe fu	able <i>B</i> is define ally the distribute	d by $B = X_1 + 1$ tion of A and t	X_2 , where X_1 and the distribution of	and X_2 are indepof B .	pendent rando	m v
The random vari of X . Describe fu	able <i>B</i> is define ally the distribute	d by $B = X_1 + 1$ tion of A and t	X_2 , where X_1 and the distribution of	and X_2 are indepof B .	pendent rando	m v
The random vari of <i>X</i> . Describe further Distribution of <i>A</i>	able <i>B</i> is define ally the distribu	d by $B = X_1 + 1$ tion of A and t	X_2 , where X_1 and the distribution of	and X_2 are indepof B .	pendent rando	m v
The random vari of <i>X</i> . Describe further Distribution of <i>A</i>	able <i>B</i> is define ally the distribu	d by $B = X_1 + 1$ tion of A and t	X_2 , where X_1 and the distribution of	and X_2 are indepof B .	pendent rando	m v
The random vari of <i>X</i> . Describe further Distribution of <i>A</i>	able <i>B</i> is define ally the distribu	d by $B = X_1 + 1$ tion of A and t	X_2 , where X_1 and the distribution of	and X_2 are indepof B .	pendent rando	m v
The random vari of <i>X</i> . Describe full Distribution of <i>A</i>	able B is define	d by $B = X_1 + 1$ tion of A and the second seco	he distribution of	and X_2 are indepof B .	pendent rando	m v
The random vari of <i>X</i> . Describe full Distribution of <i>A</i>	able B is define	d by $B = X_1 + 1$ tion of A and the second seco	he distribution of	and X_2 are indepof B .	pendent rando	m v
The random vari of <i>X</i> . Describe for <i>X</i> . Describe for the describition of <i>A</i> . Distribution of <i>A</i> . Distribution of <i>B</i> .	able B is define ally the distribu	d by $B = X_1 + 1$ tion of A and the second seco	he distribution of	and X_2 are indepof B .	pendent rando	
The random vari of <i>X</i> . Describe for <i>X</i> . Describe for the Distribution of <i>A</i>	able B is define ally the distribu	d by $B = X_1 + 1$ tion of A and the second seco	he distribution of	and X_2 are indepof B .	pendent rando	
The random variof X. Describe for X. Describe for A. Distribution of A. Distribution of B. Distribution of B.	able B is define ally the distribu	d by $B = X_1 + 1$ tion of A and the second seco	he distribution of	and X_2 are indepof B .	pendent rando	

3

The management of a factory wished to find a range within which the time taken to complete a

i)	Calculate a 95% confidence interval for μ . [3]
ate	r another 95% confidence interval for μ was found, based on a random sample of 30 employees.
i)	State, with a reason, whether the width of this confidence interval was less than, equal to or greater than the width of the previous interval.

a certain machine was taken and the masses, in grams, were found to be as follows.

4

The mean mass of packets of sugar is supposed to be 505 g. A random sample of 10 packets filled by

i) Find u	nbiased e	estimate	es of the	popula	tion me	an and	variance	e.			[
••••											
•••••	•••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	••••••
•••••	•••••		•••••	••••••	••••••	•••••			•••••	•••••	
	•••••		•••••	••••••	•••••	•••••		•••••	•••••	•••••	
•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	
	•••••		•••••	••••••	•••••	•••••					
	nass of pa	ackets p	oroduce	d by thi	s machi	ne was i	found to	be les	s than 5	 05 g, so th	
s adjuste schine we	nass of pa d. Follo re measu	ackets pwing the and and populat	oroduce ne adjust the tot	d by this stment, al mass	s machi the mas was for	ne was to sses of a und to b	found to a rando e 75 66 , test at	o be less m samp 0 g.	s than 5 le of 1:	05 g, so the solution of	s from t
s adjuste chine we) Given	nass of pad. Followere measu	ackets pwing the and and populat	oroduce ne adjust the tot	d by this stment, al mass	s machi the mas was for	ne was to sses of a und to b	found to a rando e 75 66 , test at	o be less m samp 0 g.	s than 5 le of 1:	50 packet	s from t
s adjuste schine we) Given	nass of pad. Followere measu	ackets pwing the and and populat	oroduce ne adjust the tot	d by this stment, al mass	s machi the mas was for	ne was to sses of a und to b	found to a rando e 75 66 , test at	o be less m samp 0 g.	s than 5 le of 1:	50 packet	s from t
s adjuste schine we) Given	nass of pad. Followere measu	ackets pwing the and and populat	oroduce ne adjust the tot	d by this stment, al mass	s machi the mas was for	ne was to sses of a und to b	found to a rando e 75 66 , test at	o be less m samp 0 g.	s than 5 le of 1:	50 packet	s from t
s adjuste schine we	nass of pad. Followere measu	ackets pwing the and and populat	oroduce ne adjust the tot	d by this stment, al mass	s machi the mas was for	ne was to sses of a und to b	found to a rando e 75 66 , test at	o be less m samp 0 g.	s than 5 le of 1:	50 packet	s from t
s adjuste achine we	nass of pad. Followere measu	ackets pwing the and and populat	oroduce ne adjust the tot	d by this stment, al mass	s machi the mas was for	ne was to sses of a und to b	found to a rando e 75 66 , test at	o be less m samp 0 g.	s than 5 le of 1:	50 packet	s from t
s adjuste schine we) Given	nass of pad. Followere measu	ackets pwing the and and populat	oroduce ne adjust the tot	d by this stment, al mass	s machi the mas was for	ne was to sses of a und to b	found to a rando e 75 66 , test at	o be less m samp 0 g.	s than 5 le of 1:	50 packet	s from t
s adjuste schine we) Given	nass of pad. Followere measu	ackets pwing the and and populat	oroduce ne adjust the tot	d by this stment, al mass	s machi the mas was for	ne was to sses of a und to b	found to a rando e 75 66 , test at	o be less m samp 0 g.	s than 5 le of 1:	50 packet	s from t
s adjuste achine we	nass of pad. Followere measu	ackets pwing the and and populat	oroduce ne adjust the tot	d by this stment, al mass	s machi the mas was for	ne was to sses of a und to b	found to a rando e 75 66 , test at	o be less m samp 0 g.	s than 5 le of 1:	50 packet	s from t

(iii)	Explain why the use of the normal distribution is justified in carrying out the test in part (ii). [1]
(111)	Explain why the use of the normal distribution is justified in earlying out the test in part (ii).

5

The diagram shows the probability density function, f, of a random variable X, in terms of the constants a and b.

(i)	Find b in terms of a .	[2]
(ii)	Show that $f(x) = \frac{2}{a} - \frac{2}{a^2}x$.	[3]

•••	 •••••
•••	
•••	
•••	•••••••••
•••	
•••	•••••
•••	
•••	••••••
•••	
•••	
•••	
•••	
•••	
•••	
•••	••••••
•••	
•••	•••••

(i)	State, in context, one condition for the number of accidents in a given period to be modelled a Poisson distribution.
	a Poisson distribution.
ssu	me now that a Poisson distribution is a suitable model.
ii)	Find the probability that exactly 4 accidents will occur during a randomly chosen 12-week period
	Find the probability that more than 3 accidents will occur during a randomly chosen 10-we period.

•••••
••••••
•••••
•••••
•••••

7

A ten-sided spinner has edges numbered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Sanjeev claims that the spinner

(i)	Test at the 1% significance level whether Sanjeev's claim is justified.	
		•••••
		••••••
		•••••
		•••••
		••••••
		••••••
(ii)	Explain why a Type I error cannot have been made.	

In fact the spinner is biased so that the probability that it will land on the 10 on any spin is 0.5. (iii) Another test at the 1% significance level, also based on 9 spins, is carried out. Calculate the probability of a Type II error. [6]

Additional Page

If you use the following lined page to complete the answer(s) to any must be clearly shown.	question(s), the question number(s)

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.